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Preface

This is a book on foundational issues of classical (non-quantum) physics. It is not
a systematic textbook, and it contains no exercises. Rather, we try to impart some
knowledge about the fundamental nature and structure of the physical spacetime in
a mostly non-technical, nevertheless hopefully precise and consistent language. (A
few more technical details are deferred to two appendices.) Some basic knowledge
of general relativity and differential geometry would certainly be helpful, especially
for Chap. 2. In some places we also follow the historical evolution of views and
ideas, and we enrich the presentation by characteristic, sometimes provocative
quotations from the creators of the associated theories and models. An extensive
reference list documents the fact that all the claims and theorems formulated
here have a secure mathematical and/or observational basis, and it provides the
interested and educated reader with the possibility to dig deeper into special topics.
In particular, the book aims to provide a (surely personal) selection of relevant
literature on the foundations and the nature of spacetime, and one that is not usually
found in standard textbooks on classical mechanics or general relativity. Although
the book would not properly fall into the category of popular books, undergraduate
students should be able to read at least parts of the book (in particular Chap. 1)
with understanding and profit. On the other hand, we hope that even professional
experts will find some new viewpoints and connections between different topics.
The selection of topics treated in detail (and the omission of other items) may be
somewhat unusual, but we think it is justified in view of the title of the book.
Wherever possible, we emphasize the mutual dependence and interplay between
different subjects.

As the title of the book promises, a central theme is the phenomenon of inertia,
from its historic introduction by Galileo and Newton to the Machian hypothesis of
its origin in cosmology, and the (at least partial) observational confirmation of this
astonishing fact. It is quite obvious that the first part of the book title is adopted from
the book ‘Gravitation and Inertia’ (Ciufolini and Wheeler 1995), but interchanging
the words because, presumably more than in any other book, inertia is a dominating
theme of the present book. The second part of the title is taken from the brilliant talk
by J. Ehlers at the Trieste conference celebrating Dirac’s seventieth birthday (Ehlers
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vi Preface

1973). In this way, we would also like to honor the two scientists, J.A. Wheeler and
J. Ehlers, who have been the most important mentors for one of the present authors
(H.P.) in his struggle with and enthusiasm for general relativity.

According to Einstein’s equivalence principle, inertia is intimately connected
with gravitation, and on the basis of this principle, through a tedious process,
Einstein eventually developed his relativistic theory of gravity, general relativity.
This theory turned out to be a complete triumph in every respect, and it stands today
unchanged, and without a single conflict with experiment, nearly 100 years after its
creation. Chapters 2–4 deal with this theory but, as already stressed above, not in
the sense of a systematic and complete, textbook-like presentation, but by focusing
on some characteristic and fundamental topics within this immensely rich theory.
In Chap. 2, we review the remarkable ‘derivation’ of the (pseudo-)Riemannian
spacetime structure from the properties of the elementary objects ‘free particles’ and
‘light rays’, as initiated by H. Weyl, and worked out in detail by J. Ehlers, F. Pirani,
A. Schild, and others, nowadays known as EPS axiomatics. Such a physically
satisfying deduction of the different levels of geometric structure of our ‘world’
is hardly ever found, even in modern textbook presentations of Einstein’s theory of
gravity.

Chapter 3 tries to give prominence to the very special structure of general
relativity, which manifests itself in the many different routes leading to Einstein’s
field equations, in deep mathematical results (Cauchy problem, positive energy
theorem, singularity theorems), and in spectacular astrophysical predictions, e.g.,
the existence of black holes. General relativity also encompasses the whole of
classical physics, and therefore Einstein’s field equations are the most involved,
but also the richest equations one can think of in this regime. We hope to transmit
some of our own astonishment and fascination for the beauty, consistency, and
completeness of this theory, something which nobody could foresee at the time of
its creation.

Chapter 4 returns in a way to the central topic of this book, inertia. In their
attempt to find the basic source of this phenomenon, E. Mach, B. and I. Friedlaender,
A. Föppl, A. Einstein, and others mainly considered rotating systems, in the tradition
of Newton’s rotating bucket. Within general relativity, this led to different models
for the so-called dragging of free particles and inertial systems by accelerating, and
particularly rotating heavy masses. Taken as a whole, such examples strengthen
the hypothesis of E. Mach that inertia is, in a non-causal way, ruled by the
overall masses of the universe. Modern precision experiments and observations
are in accordance with this view, for which interesting and stimulating, sometimes
provocative formulations can be found in modern textbooks and research articles.
A particular effect of moving masses in general relativity shows up in a new, non-
Newtonian ‘force’, called gravitomagnetism, which has recently been confirmed
by intricate satellite experiments, 90 years after its prediction by A. Einstein and
H. Thirring.

A decisive seed for parts of this book, particularly Chap. 1, and for parts of the
research of one of the authors (H.P.), grew out of the following incident. In 1972,
as a young lecturer at the University of Tübingen, Germany, he had the duty (or
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rather the privilege) to deliver a major course on theoretical mechanics (4 h a week,
over a whole year). In preparing this course, he studied the standard textbooks
on mechanics and was thoroughly dissatisfied with the way the foundations of
mechanics, and in particular Newton’s first law (the law of inertia), were presented
in most of these textbooks. A first shortcoming results from the fact how briefly,
superficially, and carelessly this law is often treated. Since this is usually the first
law which is presented to young physics students—and it is after all one of the
most important and universal laws, with relevance in all areas of physics, not only
for mechanics—one would expect, also for pedagogical purposes, that it would
serve as a model for a thorough, clear, and logically convincing presentation of the
fundamental facts of nature. The difficulty, but also the general failure to achieve
this, was clearly expressed long ago by H. Hertz in his famous book on mechanics
(Hertz 1894):

It is quite difficult to present the introduction to mechanics to an intelligent audience without
some embarrassment, without the feeling that one should apologize here and there, without
the wish to pass quickly over the beginnings.

Besides this fast and careless way of passing over the beginnings, an even more
serious deficit in many textbooks shows up in tautologies, circular arguments, a
missing distinction between definitions and non-trivial facts of nature, and in some
cases in a mixing between Newton’s first, second, and third laws. To make this
concrete, we quote from a well-established and highly recommended mechanics
textbook (Marion 1965, p. 58):

Thus, the first and second laws are not really ‘laws’ in the usual sense of the term as used
in physics; rather, they may be considered as definitions. The third law, on the other hand,
is indeed a law. It is a statement concerning the real physical world and contains all of the
physics in Newton’s laws of motion. [Then in a footnote] The reasoning presented here,
viz., that the first and second laws are actually definitions and that the third law contains the
physics, is not the only possible interpretation. Lindsay and Margenau (1936) for example,
present the first two laws as physical laws and then derive the third law as a consequence.

And this unspeakable formulation, which is really an insult to Newton, is to be
found, not only in the first edition of the book from 1965, but literally unchanged
in the fourth edition from 1995. [We admit that there are a few textbooks that really
take care over the presentation of Newton’s basic laws, and avoid most of the pitfalls.
As an example, we call attention to the textbook Straumann (1987).]

Surely one cannot blame Newton for all the nonsense about Newton’s laws in
modern textbooks, even if from today’s perspective and with today’s knowledge
some of Newton’s concepts and formulations are unfortunate or even untenable, e.g.,
the concepts of ‘absolute space’ and ‘absolute time’. However, in order to appreciate
Newton’s genius and his primacy in the formulation of the foundations of physics,
one has to compare Newton’s Principia with the (even less tenable, and much less
successful) attempts of his forerunners and contemporaries, as we shall do to some
extent in Sect. 1.1. And Newton was well aware of the difficulty of the subject and of
the provisional nature of his attempt, when he wrote in the preface to the Principia
(Newton 1687, p. 383):
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I earnestly ask that everything be read with an open mind and that the defects in a subject
so difficult may be not so much reprehended as investigated, and kindly supplemented by
new endeavors of my readers.

But the unsurpassed success of Newton’s program in all applications pre-
vented later generations, and many of today’s textbook authors, from examining
Newton’s formulations critically and from eliminating its defects. For nearly 200
years, there was no real critical reflection and therefore no improvement on
Newton’s foundations of mechanics, until finally, beginning in the year 1870,
a growing number of researchers revisited these questions and reached, besides
a fundamental critique of Newton’s concepts of ‘absolute space’ and ‘absolute
time’ (particularly by E. Mach), a genuine clarification, and an elimination of
Newton’s absolute concepts, mainly due to C. Neumann and L. Lange, as we
shall analyze in detail in Sect. 1.2. Sections 1.3 and 1.4 attempt to improve
on some deficiencies still present in the work of L. Lange, particularly in the
definition of the basic ingredients of the law of inertia, ‘free particles’, and ‘straight
lines’.

The geometrical approach to Einstein’s relativistic spacetime theory, emphasiz-
ing the intrinsic spacetime structure, starting with Weyl and culminating in the EPS
axiomatics, is essentially based on a four-dimensional formulation of spacetime
as a differential manifold with geometrical structures (defined by tensor fields),
the second central theme of this book. In this respect, the book should also serve
as an introduction to the conceptual foundations of spacetime theories, and their
peculiar character based on ‘events’ and the spatio-temporal relations between them,
and this from the perspective of Newton’s law of inertia. Section 1.5 develops
such a four-dimensional analysis of Newtonian physics, thereby bringing out the
fundamental nature of non-relativistic spacetime (namely, the so-called Leibnizian,
Galilean, and Newtonian accounts of space and time). In this respect, this section
serves as a preparation for, and contrast to, the corresponding structures in general
relativity, presented in Chap. 2. The spacetime geometry of standard Newtonian
physics, consistent with Lange’s analysis of the law of inertia, is Galilean spacetime,
which is “presupposed in all standard accounts of Newtonian mechanics, even
though this presupposition is usually tacit and unremarked” (Maudlin 2012, p. 64).
Newton’s law of gravitation, its reformulation in a four-dimensional geometric
setting (in the spirit of special and general relativity), its distinctive properties,
and some typical applications in astrophysics, e.g., rotating stars, are treated in
Sect. 1.6. And here, surprisingly, even in this centuries old classical field, lie
dormant astrophysically relevant, but mathematically difficult and hitherto unsolved
problems.



Preface ix

We are deeply indebted to our copy editor Stephen N. Lyle for the careful edit of
our manuscript, for the valuable comments, and for his judicious corrections and
improvement of grammar and style. We wish also to thank our editor Christian
Caron at Springer for excellent cooperation and support of this book project within
the Lecture Notes in Physics series.

Tübingen, Germany H. Pfister
November 2014 M. King

This sketch of a merry-go-round shall serve as an example for the combined action of inertia
(centrifugal force Fc) and gravity (force Fg) from everyday life.

Notation

In most cases we use the so-called geometric units, where the gravitational constant
G and the light velocity c are set to 1. Four-dimensional spacetime coordinates are
denoted by Greek letters �; �; : : : D 0; 1; 2; 3. Three-dimensional space coordinates
are denoted by Latin letters i; k; : : : D 1; 2; 3: The Minkowski metric is denoted by
��� = diag(1;�1;�1;�1/. The symbol AŒ��� means antisymmetrization between
the indices, i.e., AŒ��� D .A�� � A��/=2. Partial differentiation is written . /;�,
and covariant differentiation is written . /I�. Occasionally X is written instead of
X� for a 4-vector, and x denotes a 3-vector.



x Preface

References

Ciufolini, I., Wheeler, J.A.: Gravitation and Inertia. Princeton University Press, Princeton (1995)
Ehlers, J.: The nature and structure of spacetime. In: Mehra J. (ed.) The Physicist’s Conception of

Nature, pp. 71–91. Reidel, Dordrecht (1973)
Hertz, H.: Die Prinzipien der Mechanik, p. 8. J. A. Barth, Leipzig (1894)
Lindsay, R.B., Margenau, H.: Foundations of Physics. Wiley, New York (1936)
Marion, J.B.: Classical Dynamics of Particles and Systems. Academic, New York (1965); Fourth

edition by J.B. Marion and S.T. Thornton, Harcourt Brace, Fort Worth, p. 50 (1995)
Maudlin, T.: Philosophy of Physics: Space and Time. Princeton University Press, Princeton (2012)
Newton, I.: Mathematical Principles of Natural Philosophy (1687). Translated and edited by I.B.

Cohen, A. Whitman. University of California Press, Berkeley (1999)
Straumann, N.: Klassische Mechanik. Lecture Notes in Physics, vol. 289. Springer, Berlin (1987);

Second enlarged edition published as Theoretische Mechanik. Springer, Berlin (2015)



Contents

1 The Laws of Inertia and Gravitation in Newtonian Physics . . . . . . . . . . . . 1
1.1 Historical Remarks (Galileo, Huygens, Newton) . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Work of Ludwig Lange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 What is a Free Particle? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 A New Definition of a Straight Line, Connections

with Projective Geometry, and Newton’s Law of Inertia . . . . . . . . . . . . . . 14
1.5 Spacetime Structures of Newtonian Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6 Newton’s Law of Gravitation, and Poisson’s Equation.. . . . . . . . . . . . . . . 31
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2 Free Particles and Light Rays as Basic Elements of General
Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.1 The Seeds Disseminated by Hermann Weyl . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2 Light Rays Define the Conformal Structure (Ehlers,

Pirani, Schild) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3 Free Particles Define the Projective Structure

(Desargues Theorem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.4 Weyl Structure, Affine Structure, and Metric Structure . . . . . . . . . . . . . . . 69
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3 Einstein’s Field Equations, Their Special Mathematical
Structure, and Some of Their Remarkable Physical Predictions . . . . . . . 79
3.1 Many Different Routes to Einstein’s Field Equations .. . . . . . . . . . . . . . . . 79
3.2 The Very Special Structure of Einstein’s Field Equations

and Some of Their Mathematical Consequences . . . . . . . . . . . . . . . . . . . . . . 90
3.3 Special, Important, and Sometimes Spectacular

Predictions of General Relativity in Physics,
Astrophysics, and Cosmology .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xi



xii Contents

4 Mach’s Principle, Dragging Phenomena, and Gravitomagnetism . . . . . . 119
4.1 Early Ideas and Statements by Mach, Friedlaender,

Föppl, and Einstein. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2 Dragging Phenomena in General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.3 Realization of Machian Ideas in Cosmology and in Nature. . . . . . . . . . . 133
4.4 Gravitomagnetism and Its Observational Basis. . . . . . . . . . . . . . . . . . . . . . . . 138
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A A Sketch of the Proof that the Inertial Path Structure
Follows from a Local Desargues Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B Slowly Rotating Mass Shells with Flat Interiors. . . . . . . . . . . . . . . . . . . . . . . . . . 157
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Name Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177



Chapter 1
The Laws of Inertia and Gravitation
in Newtonian Physics

1.1 Historical Remarks (Galileo, Huygens, Newton)

It seems appropriate to begin the historical analysis of the laws of inertia and
gravitation with the work of Galileo. Of course, in the classical Greek period, in the
Hellenistic period, and in the early middle ages, there was already much activity and
also progress in the natural sciences and in ‘physics’, a term introduced by Aristotle
in around 335 BC. However, in those days, arguments were mostly of a philosophical
and qualitative character, and not corroborated by experiment. Moreover, it was
more or less a dogma that the phenomena and laws of the cosmos were independent
of, and indeed generally different from, those prevailing on Earth. If dynamical
processes were analyzed at all, the aim was to find a cause (a ‘force’) for the velocity
of an object, and not for its acceleration, as is the case in modern physics. In short,
one can say that the Aristotelian philosophy, so dominant for many centuries, was
more of a hindrance than a help in the search for the correct laws of inertia and
gravitation. (For a detailed presentation of the classical and Hellenistic period, and
of the middle ages, especially from the point of view of absolute versus relative
concepts, see, e.g., Barbour 1989, Chaps. 2–4.)

It is generally agreed that Galileo (1564–1642) is the father of the modern way of
doing physics: starting from precise observations and from specific experiments—
often in an idealized manner by minimizing disturbing effects like friction—one
attempts to generate mathematical relations between measurement data, in the
ideal case discovering a physical law, and testing such a law by new (different or
refined) experiments. Of the many successes Galileo achieved using this method,
the following are particularly relevant for our analysis of the laws of inertia
and gravitation. By experimenting with pendulums of different material, Galileo
found that all bodies fall equally (disregarding friction), or in modern language,
that inertial and gravitational mass always coincide. To a large extent from his
experiments with balls rolling down an inclined plane, Galileo derived the law
of free fall: the free fall height grows quadratically with time. The law of inertia

© Springer International Publishing Switzerland 2015
H. Pfister, M. King, Inertia and Gravitation, Lecture Notes in Physics 897,
DOI 10.1007/978-3-319-15036-9_1
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2 1 The Laws of Inertia and Gravitation in Newtonian Physics

(free particles move uniformly on straight lines relative to an inertial system) could
not have been formulated by Galileo with this clarity and completeness, mainly
because the concept of an inertial system was not yet available at the time. But it
was completely clear to him that a body free of any external influence (‘force’)
maintains its constant horizontal velocity. And he combined this constant free
horizontal motion with his law of free fall, applying the parallelogram rule, and
concluded as to the parabolic path of a projected body. A quotation from Galileo’s
Dialogue (Galileo 1630, p. 186), makes clear that he was aware of the invariance of
the physical phenomena with respect to velocity transformations:

Shut yourself up with some friend in the main cabin below decks on some large ship, and
have with you there some flies, butterflies, and other small flying animals. Have a large bowl
of water with some fish in it; hang up a bottle that empties drop by drop into a wide vessel
beneath it. With the ship standing still, observe carefully how the little animals fly with
equal speed to all sides of the cabin. The fish swim indifferently in all directions; the drops
fall into the vessel beneath; and, in throwing something to your friend, you need throw it no
more strongly in one direction than another, the distances being equal; jumping with your
feet together, you pass equal spaces in every direction. When you have observed all these
things carefully (though there is no doubt that when the ship is standing still everything must
happen in this way), have the ship proceed with any speed you like, so long as the motion
is uniform and not fluctuating this way and that. You will discover not the least change in
all the effects named, nor could you tell from any of them whether the ship was moving or
standing still.

Since the independence of the phenomena with respect to time translation, space
translation, and orientation was at least implicitly evident at that time, it is perfectly
justified that the 10-parameter invariance group of ‘Galilean transformations’ should
carry his name (see also Sect. 1.5).

In the period between Galileo and Newton the dominant figure in physics
was surely Huygens (1629–1695). Since much of his work was published only
posthumously, some results, usually attributed to Newton, were already anticipated
by Huygens. Extremely important technical inventions by Huygens were the precise
pendulum clock and the spring clock. (Right up to now, high precision experiments
have always been based on precise time-keeping or frequency measurements,
currently reaching a precision of 10�18.) He also showed that a pendulum with a fre-
quency independent amplitude has to move on a cycloid. Detailed experiments and
analyses with elastic collisions brought him to the conservation laws for momentum
and (kinetic) energy, and to an even clearer and more general understanding of the
principle of relativity than the one expressed above by Galileo. Possibly Huygens’
most important contribution—which led in Newton’s hands to the derivation of the
general law of gravitational attraction from Kepler’s laws for the planetary orbits—
was his derivation in 1669 of the correct ‘centrifugal’ force, a term coined by
Huygens: Fc � v2=r . (Later, in Chap. 4, the centrifugal force will again play a
decisive role in the attempt to derive it as a gravitational force, along the lines
of Mach, Einstein, and Thirring.) Huygens also realized that a precise concept
of ‘force’ has to be based on the analysis and measurement of accelerations, and
through that he came closer than anybody else to anticipating Newton’s second law.
However, near the end of his life, when he studied Newton’s Principia, he refused
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Newton’s concept of absolute space, and also his concept of gravitation as an action-
at-a-distance force.

Naturally, the work of Newton (1643–1727) built decisively on the results of
his predecessors, and in particular, Galileo and Huygens. Besides deepening and
generalizing their concepts and laws, he also contributed fundamentally new ideas,
and eventually created a work which largely shaped the future science of physics—
and not only mechanics and gravitation—for the following 200 years. Many of his
most innovative discoveries were made and developed when he was still young (in
the years 1664–1666), working in isolation at his home village of Woolsthorpe
when Cambridge University was closed due to the plague. However, the general
and systematic compendium of all his ideas and work, including precise numerical
calculations and predictions, was only published in 1687 at the request of his
contemporaries and discussion partners Halley, Hooke, and Wren. The resulting
Principia (Newton 1687) became the most impressive, most important, and most
influential physics publication of all time. It comprised a comprehensive treatise of
all motions (whether terrestrial or celestial) which could be produced from a mere
handful of general principles formulated in a mathematically rigorous framework.
Naturally, of central importance for our purposes are his basic laws of mechanics
(Newton 1687, pp. 416–417):

Law 1 Every body perseveres in its state of being at rest or of moving uniformly
straight forward except insofar as it is compelled to change its state by
forces impressed.

Law 2 A change in motion is proportional to the motive force impressed and takes
place along the straight line in which that force is impressed.

Law 3 To any action there is always an opposite and equal reaction; in other
words, the actions of two bodies upon each other are always equal and
always opposite in direction.

In the Principia, these laws are preceded by definitions of some physical quantities,
e.g., quantity of matter, quantity of motion, impressed force, and centripetal force.
Even if, from today’s perspective, some of these definitions are no longer tenable,
some formulations of the laws are not optimal, and a precise definition of inertial
systems is missing, Newton clearly distinguished between definitions and laws, and
he also made it explicit that the three laws describe different facts of nature. [This
is in contrast to some modern textbooks, e.g., Marion (1965, p. 58), as quoted
in the Preface.] Concerning laws 1 and 2, Newton gives much credit to Galileo,
and concerning law 3, to Huygens, Wallis, and Wren (Newton 1687, pp. 424–425).
However, it is clear, for example, that Newton generalized the concept of ‘force’ far
beyond the work of his forerunners, making it much more precise by combining the
phenomena of inertia, collision processes, and centrifugal force. And this concept
would later demonstrate its usefulness even beyond Newton’s own expectations, in
a wide variety of new phenomena and applications. In view of these many different
types of ‘force’, a concise and general definition of the concept seems impossible
even today. It may therefore be that we must retreat to the remarkable formulation
in Feynman et al. (1965, pp. 12–2): “the law [law 2] is a good program for analyzing
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nature. It is a suggestion that the forces will be simple”. At the end of the nineteenth
century there were even (not quite convincing) attempts (e.g., by Kirchhoff, Hertz,
and Mach) to completely eliminate the concept of ‘force’ from physics. As for any
concept or law in physics, there are, however, limits to the usefulness of the concept
of ‘force’, e.g., in quantum theory and general relativity.

Besides the three basic laws of mechanics, a second all-important highlight of
the Principia, and a topic of central importance for us, is the correct law for a
universal gravitational force. For a long time, the nearly perfect homogeneity of the
Earth’s gravitational field on the human and laboratory scale delayed the realization
that gravity is in fact a long-range and universal central force field. And it needed
Newton’s boldness (whether or not it was inspired by an apple falling from a tree in
his Woolsthorpe garden) to hypothesize that gravity extends right out to the Moon
and the other bodies of the Solar System, and is responsible for the elliptic orbits of
all planets, described by Kepler’s laws. (Vague conjectures of this sort are already
to be found in the work of Kepler, who also coined the term ‘inertia’.) It also
required Newton’s sovereignty in the geometric analysis of conics and his command
over the mathematics of infinitesimal elements to derive in detail the 1=r2 law of
gravitational attraction from the three Kepler laws, viz., elliptic orbits, the area law,
and proportionality between the square of the period of revolution and the cube of
the major axis of the ellipse. (A more qualitative conjecture of a 1=r2 gravitational
force was already formulated by Hooke some years before Newton.) The details of
Newton’s derivation are to be found in Proposition 11 of Book I of the Principia
(Newton 1687, p. 462), and are explained in more modern terms in, e.g., Cohen
(1981) and Barbour (1989, Sect. 10.9). The concept of gravity as an action-at-a-
distance force with quasi-infinite range was of course difficult to accept, even for
Newton, and much more so for most of his contemporaries, e.g., Huygens and
Leibniz. Newton’s difficulties with an action-at-a-distance force are wonderfully
expressed in a famous quotation from his letter to Bentley (Newton 1756):

That one body may act upon another at a distance through a vacuum, without the mediation
of anything else, by and through which their action and force may be conveyed from one
to another, is to me so great an absurdity that I believe no man who has in philosophical
matters a competent faculty of thinking can ever fall into it.

Today we know from general relativity that gravity as a whole is a local and
causal field theory where changes, as far as they contain variable quadrupole
moments, propagate maximally with light velocity. However, the conceptual dif-
ficulty with the acausal static gravitational field persists to a certain extent:
geometrically, we may say that a massive body produces for all time a curved man-
ifold around itself in which all other bodies have to move on predetermined orbits.
More mathematically, we know that the Einstein field equations of general relativity
also contain, besides the dynamical equations (e.g., for gravitational waves), time-
independent constraints which include, in an appropriate approximation, Newton’s
1=r2 action-at-a-distance law, similar to Coulomb’s law in electrodynamics. (We
will come back to these questions in Sect. 3.2.) By analyzing in detail the orbits
of all planets and moons of the Solar System, and in particular the disturbances of
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the elliptical orbits by additional masses, Newton could prove that gravity really
is a universal force in which all massive bodies in the universe participate. Due
to Einstein’s law E D mc2, we know today that any physical system which, by
definition, has energy and therefore mass, participates actively and passively in
gravitation. In his Principia, Newton also derived other characteristic and important
properties of the gravitational force, e.g., in Newton (1687, p. 590), he showed that,
in the region exterior to it, an arbitrary, finite, spherical mass distribution acts like
a point mass at its center. In Sect. 1.6, we will give a summary of other specific
properties of Newton’s law of gravitation.

Finally, we should make some comments on Newton’s somewhat surprising
concepts of absolute space and absolute time in a so-called Scholium (Newton 1687,
pp. 408–415), placed between the definitions and the laws. On the one hand, it
is understandable on philosophical if not religious grounds that Newton was also
looking for a unique, fixed background (not just the somewhat incomprehensible
infinity of equivalent inertial systems) to take as starting point for his physical
laws. And a glance at the sky with its so-called fixed stars may have been another
motivation for this, as would also have been Newton’s opposition to Descartes’
relativism. It has also to be said that Newton’s formulation of law 1 would lose much
of its nontrivial physical content, and would reduce to a kind of definition, if it did
not rely (at least implicitly) on the concepts of absolute space and absolute time.
On the other hand, Newton’s attempt to prove the existence of absolute space by his
famous experiment with the rotating bucket (Newton 1687, pp. 412–413) is doomed
to failure because this experiment has identical results in all inertial systems, and
distinguishes only rotation from linear velocity. It is also quite evident that the
concepts of absolute space and absolute time were only a type of makeshift solution
for Newton, and throughout most of the Principia, he only makes use of relative
rather than absolute concepts. Topics like his famous Corollary 5 [the relativity
principle, in Newton (1687, p. 423)] can even be seen to contradict the absolute
concepts. How cautious, if not reluctant, Newton was about these concepts can also
be seen from the following quotations from the Principia (Newton 1687, pp. 410–
411): “It is possible that there is no uniform motion by which time may have an
exact measure”, and “For it is possible that there is no body truly at rest to which
places and motions may be referred.” Newton’s self-critical attitude is wonderfully
described in Einstein (1927):

Newton himself was better aware of the weaknesses inherent in his intellectual edifice than
the generations of learned scientists which followed him. This fact has always aroused my
deep admiration.

Einstein also formulated with admirable clarity the reason why concepts like
absolute space and absolute time should not have a place in physics (Einstein 1922):

It is contrary to the scientific mode of understanding to postulate a thing which acts, but
which cannot be acted upon.

It is well known that, even in Newton’s day, there were prominent opponents
to Newton’s absolute concepts, in particular Huygens, Leibniz, and Berkeley.
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However, it took nearly 200 years to arrive at clear and consistent formulations
of Newton’s laws, especially law 1, which avoided or eliminated any recourse to
absolute space and absolute time, as we will explicate in Sect. 1.2.

1.2 The Work of Ludwig Lange

Before coming to the work of Ludwig Lange, we should comment on Neumann’s
inaugural address (Neumann 1870) at the University of Leipzig, which is a kind of
forerunner of Lange’s work and which is quoted by Lange as a decisive stimulus
for his own work. Neumann manages to replace Newton’s absolute time by an
operational definition: he assumes, without stating this explicitly, that force-free
particles exist and can be identified as such, and also that absolute space can
be observed directly. He then abstracts from experimental observation that “two
material points, each force-free, move in such a manner that equal path distances
of the one always correspond to equal path distances of the other”. [A similar
formulation can also be found in the later treatise (Thomson and Tait 1879, pp. 246–
248)]. From this he concludes that “equal time intervals can be defined as those in
which a force-free particle moves equal space intervals”. (Definition of an inertial
clock!) It is somewhat strange that Neumann does not make any attempt along
similar lines to replace absolute space by an operational definition. On the contrary,
he strengthens Newton’s concept of absolute space, and tries to make it more
concrete by saying that “at some unknown place in the universe there is an unknown
body, indeed an absolutely rigid body, a body whose shape and size are unchanged
for all time”, and he calls this ‘Body Alpha’. [To some extent this body was already
anticipated by Newton when he says in Newton (1687, p. 411), “since it is possible
that some body in the regions of the fixed stars or far beyond is absolutely at rest”.]
However, the concept of this Body Alpha loses much of its privileged status because
Neumann has to admit that there would exist infinitely many equivalent bodies due
to Galileo’s principle of relativity.

In the years 1885–1886, L. Lange (at the age of just 22–23!) published three
papers on the law of inertia which must certainly be judged as a stroke of genius
because, for the first time, and nearly 200 years after Newton’s Principia, he
succeeded in eliminating the concepts of absolute space and absolute time, replacing
them by a clear operational analysis in which he determines which parts of Newton’s
law 1 are useful definitions and which parts are non-trivial experimental facts, if not
wonders of nature. The papers Lange (1885a, 1886) are quite extended. Besides
Lange’s innovative contributions, they also include historical and philosophical
overviews of the law of inertia, while Lange (1886) contained Lange’s Ph.D. thesis,
presented in 1886 at the University of Leipzig. The shorter paper (Lange 1885b)
concentrates on Lange’s own contributions and their mathematical foundations. In
the following, we mainly refer to and quote from this paper, for which an English
translation has recently been published, together with a commentary (Pfister 2014).



1.2 The Work of Ludwig Lange 7

In 1902, Lange published another quite extended analysis (Lange 1902) of the law
of inertia, together with reactions to his earlier work by other authors (see below).

The motivation for Lange’s work and its main results are clearly expressed by
the following quotation from Lange (1885b):

Newton’s absolute space is a phantom that should never be made the basis of an exact
science. [. . . ] To find a fully valid substitute for it is the goal of the following.

As already mentioned, in the elimination of Newton’s absolute time, Lange
follows the results of Neumann (1870) when he says in Lange (1885b):

The fundamental timescale of dynamics is to be defined through the motion of a point left
to itself. Under this viewpoint, the law of the uniform motion of all points left to themselves
is, as Thomson and Tait (1879) correctly note, a pure convention for one such point, and it
is more than convention, it is a research result, only insofar as it applies to any other points
left to themselves. [. . . ] The question now arises whether it is possible to eliminate also the
absolute space by a similar procedure. Indeed this is possible. The fundamental coordinate
system of dynamics may be called ‘inertial system’, the fundamental timescale of dynamics
‘inertial timescale’.

This is clearly the first place where the now standard terms ‘inertial system’ and
‘inertial timescale’ are introduced into the literature.

In exactly the same way as the one-dimensional inertial timescale could be defined through
one single point left to itself, the three-dimensional inertial system can be defined through
three points left to themselves.

[Originally, in Lange (1885a), Lange tried to base an inertial system on only
two points left to themselves. After an objection by the mathematician A. Voss, he
corrected this in an addendum on pp. 539–545 of Lange (1885a) to three points left
to themselves.]

Herefrom follows that the law of the constant direction of motion of force-free points is
pure convention for three such points, but embodies a noteworthy research result insofar as
it is valid for more than three, for arbitrarily many points in relation to one and the same
system.

Lange then summarizes his results in an admirably clear and concise way:

Definition I. ‘Inertial system’ is called any coordinate system of the kind that in relation to
it three points P;P 0; P 00, projected from the same space point and then left to themselves—
which, however, may not lie in one straight line—move on three arbitrary straight lines
G;G0; G00 (e.g., on the coordinate axes) that meet at one point.

Theorem I. In relation to an inertial system the path of an arbitrary fourth point, left to
itself, is likewise rectilinear.

Definition II. ‘Inertial timescale’ is called any timescale in relation to which one point,
left to itself (e.g., P ), moves uniformly with respect to an inertial system.

Theorem II. In relation to an inertial timescale any other point, left to itself, moves
uniformly in its inertial path.
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There is an interesting footnote to Theorem II:

One sees that, in a certain sense, the space and the time part of the law express the same
fact twice, only in one case with respect to the three-dimensional space, in the other with
respect to the one-dimensional time.

This can be seen as a first hint that in the four-dimensional language of special
relativity the two definitions and the two laws do indeed combine to form one
definition and one law. It is therefore natural that, in our further analysis of the
law of inertia in Sects. 1.3–1.6, we mainly use this four-dimensional language.
[From a more philosophical viewpoint, such a procedure is particularly advocated
in Earman and Friedman (1973).] In any case, it is remarkable that the law of
inertia is one of the few laws which read identically in nonrelativistic and relativistic
physics. Moreover, although inertial systems were first defined and applied in
mechanics, it turned out later that in the same systems, the electromagnetic, optical,
thermodynamical, and quantum-mechanical laws also take their simplest form,
which can be seen as a convincing sign of the unity of all of physics.

Part II of Lange’s paper (Lange 1885b) provides a detailed proof that the Defini-
tion I of an inertial system is indeed mathematically consistent, a fact which appears
today quite evident on the basis of linear algebra. Somewhat superfluous, Lange
aggravates this analysis by sticking to orthogonal coordinate systems, whereas the
projective structure of spacetime would be quite adequate for an analysis of the
law of inertia, as we will explicate in Sect. 1.4. In his part II, Lange also analyzes
the whole manifold of equivalent inertial systems which results from the Galilean
relativity principle. Generally speaking, part II of the paper (filling nine pages in
the original) is quite circumstantial and awkward, containing many unnecessary
repetitions, and also important loopholes and omissions, so that one may agree with
J. Barbour who, in a recent article (Barbour 2004), accused Lange’s construction of
being “rather awkward and clumsy”.

The important content of Lange’s part II has recently been elegantly extracted
(in a two-page appendix) in Giulini (2002): it can be proven that, in three-
dimensional space locally (for fixed time), the positions and the directions of
three (arbitrary) paths (but not more than three paths!) can be transformed to
prescribed new positions and directions such that the transformed ones constitute
three straight lines. What is missing in the work of Lange and Giulini are some
global conditions on the three (arbitrary?) paths: it is intuitively clear that these can
only be transformed in a non-singular and non-degenerate way (mathematically, by
a global diffeomorphism) to straight lines if the original paths are smooth, if they
are not closed, i.e., they extend at both ends to infinity, if any two of these paths
have at most one meeting point, and presumably also if some other conditions are
fulfilled.

We think that a much simpler proof that Lange’s Definition I is mathematically
consistent can proceed in the following way. One starts from three straight lines
along axes x; y; z which have to be linearly independent but not necessarily
orthogonal. Application of a global diffeomorphism

� D f1.x; y; z/ ; � D f2.x; y; z/ ; � D f3.x; y; z/ ;
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with largely arbitrary differentiable functions fi , transforms these straight axes to
new paths which are nearly arbitrary but fulfil the global conditions stated above.
The inverse transformation, which exists and is likewise non-singular and non-
degenerate, then realizes the requirement formulated by Lange in his Definition I.
Furthermore this recipe is literally extensible to the four-dimensional space-time in
order to cover the space and time part of the law of inertia. For simplicity, Lange
and Giulini confined themselves to “three points P;P 0; P 00 projected from the same
space point”. It should, however, be clear that three paths, of which two at a time
are skew to each other, can also serve as the basis of an inertial system.

In part III of Lange (1885b), Lange reviews the work of other authors who,
shortly before Lange, also critically analyzed the foundations of mechanics, in
particular Newton’s concepts of absolute space and time. He remarks that this
activity “can serve as further evidence that the question dealt with has presently
become a vital one”. In this connection one may also refer to the quite voluminous
historical work (163 pages in total) by E. Wohlwill on The discovery of the
law of inertia (Wohlwill 1883, 1884), not quoted by Lange. We have already
mentioned the papers Neumann (1870) and Thomson and Tait (1879). Lange also
refers sympathetically to the famous and influential books (Mach 1872, 1883) by
E. Mach who was the most explicit critic of Newton’s absolute space, and who gave
convincing arguments for relating inertia to the overall distribution of matter in the
universe. (We will come back to some of these arguments in Sect. 4.1.) However,
Mach did not give arguments showing how to define the local inertial systems
without recourse to absolute space. This was attempted in the book (Streintz 1883)
by H. Streintz, a student of C. Neumann. He tried to base an inertial system on
the axes of rotating gyroscopes, something which should be possible in principle.
However, since he did not clearly discriminate between definitions and laws, he was
in danger of running around a methodological circle, as Lange correctly pointed
out. Finally, Lange quotes the paper (Thomson 1883a) by J. Thomson, the elder
brother of W. Thomson (Lord Kelvin). He, like Lange, based the inertial systems on
the paths of force-free particles. However, Thomson once again did not distinguish
between definitions and laws. And what he called his law of inertia was, if anything,
only a poor formulation of Newton’s second law, while the last sentence of the
paper suggests that Newton’s first law is a special case of his second law, which
is of course fundamentally wrong. More interesting is a Note on Reference Frames
by P.G. Tait which is added to a second (not very illuminating) paper (Thomson
1883b, pp. 743–745) by J. Thomson. Here, Tait presents an alternative proof that
Lange’s Definition I is mathematically consistent, one which is much shorter and
clearer than Lange’s own derivation. It is based on a number of ‘snapshots’ of the
paths P;P 0; P 00, and the analysis of their relative distances. (One may criticize
that the projective structure suffices to formulate the law of inertia, and a metric
structure is not really necessary.) A reanalysis of Tait’s nice construction in modern
mathematical terms can be found in Giulini (2002, 2015) .

In the rest of this section we would like to document (mostly in chronological
order) the fact that, in the 25 years after publication of the Lange papers, this work
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was frequently, prominently, and almost invariably positively reviewed. Already
in the year 1886, A. König reported in detail about this new and “uncontradicted
foundation of mechanics” to the Physical Society of Berlin (König 1886). In
Seeliger (1887), the well-known astronomer H. Seeliger gave an eight-page report
on Lange’s papers (Lange 1885b, 1886):

These will constitute a very important contribution to the clarification of the fundamental
principles of the theory of motion, and will earn the attention of all people who are generally
interested in the analysis of fundamental concepts. [. . . ] The author [Lange] has succeeded
in an excellent and surprisingly enlightening way [to clear up the foundations of mechanics]
by stating the following definitions and laws.

Here Seeliger quotes Lange’s Definitions I and II and the Laws I and II
verbatim (see above). Later, in the year 1906, Seeliger repeated many of these
positive judgements of Lange’s work in a more extended article On the so-called
absolute motion (Seeliger 1906). In his remarkable article Things at rest in the
universe (Schwarzschild 1897), Seeliger’s Ph.D. student K. Schwarzschild chose a
formulation of the law of inertia which was almost identical with Lange’s (although
he did not cite Lange).

The most prominent appreciation of Lange’s work came from E. Mach who, in
the second edition (1888) of his book (Mach 1883), wrote:

Lange’s paper (Lange 1886) seems to belong to the best of what has been worked out
regarding these questions. I have much sympathy for the methodological approach. The
careful analysis and the historical–critical consideration of the concept of motion has, it
seems to me, brought results of lasting value.

In the seventh edition (1912) of Mach (1883), Mach even states in his preface:
“I thank Mr. L. Lange and Mr. J. Petzoldt not only for their agreement in details
but also for their active and successful cooperation.” And in the preface of the
ninth edition (1933) Ernst Mach’s son Ludwig speaks of Mach’s “correspondence
particularly with Ludwig Lange”.

A very interesting analysis of Lange’s paper (Lange 1886) from the logical and
linguistic standpoint is provided by the well-known logician G. Frege in Frege
(1891). On the one hand, he gives high praise:

The paper warrants reading and is suitable to dispel false security [about the law of
inertia], and to stimulate further reflection. [. . . ] It is no humble merit of the author to
have substituted a hidden relation by a clearly expressed one.

On the other hand Frege criticizes the fact that Lange leaves open the question
as to what “a particle left to itself” (or a force-free particle) might be, and what
“uniform motion” might mean, if one cannot really compare lengths at different
times. In his later review (Lange 1902), Lange admits that his work does sometimes
fall short in this regard. In Sects. 1.3 and 1.4, we shall try to make some progress
on these intricate questions by Frege. Frege’s paper is really fun to read, and it
“stimulates further reflection”, e.g., by sentences like “If one cannot answer a
question, one can at least make it disappear behind a cloud of imprecise statements”.

In the article (Voss 1901) by A. Voss about the principles of rational mechanics,
which appeared in the Encyclopedia of the Mathematical Sciences, Including
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Their Applications, the author states: “Lange has tried to remove this deficiency
[concerning the reference systems of mechanics] by specifying a system which
at least does not possess any logical or methodological defect.” A quite extended
analysis (filling 17 pages) of Lange’s work is given by J. Petzoldt in Petzoldt (1908).
On the one hand he states: “The most penetrating and most far-reaching attempt in
this direction [to save Newton’s mechanics], and which has also met with the most
approval, is the one by Ludwig Lange.” On the other hand, Petzoldt formulates a
pedantic and in parts untenable critique of the details of Lange’s construction.

Finally, we may refer to M. von Laue’s book on relativity theory, Vol. 1 (von
Laue 1911) (the very first textbook on special relativity!), in which he presents
Lange’s Definitions I and II and his Laws I and II verbatim, and assesses them
with the words: “To have set these as substitutes for the rightly called ‘somewhat
ghostly’ absolute space and absolute time of Newton, is the great deed of Ludwig
Lange.” Later, in the year 1948, von Laue published a sort of biography (von Laue
1948) of Lange with the title Dr. Ludwig Lange, 1863–1936. (An unjustly forgotten
person.) We learn there that, from 1887 on, Lange suffered from a mental disorder
that required him at times to frequent mental clinics. He continued to publish on
many different topics in his later years (not just physics, but also psychology,
photochemistry, and calendar science), but his results never reached the quality of
his work in the Ph.D. period, and he never obtained a good position at a German
university.

Today, Lange seems to be forgotten, not only as a person, but also for his “great
deed” of clarifying the real substance of the law of inertia. The only more recent
textbook we know of, which quotes and appreciates Lange’s work, is Relativity
and Geometry by R. Torretti (1983). We would like to argue, however, that nearly
every modern textbook on mechanics would be considerably improved if its often
inconsistent, circular, or otherwise untenable formulations of the law of inertia were
replaced by a verbatim quotation of Lange’s Definitions I and II, and his Laws I and
II. (Compare our criticism of mechanics textbooks in general, and of one of them in
particular, in the Preface.)

1.3 What is a Free Particle?

The law of inertia is usually based on so-called free particles, or, in the words of
L. Lange, particles left to themselves, sometimes also called force-free particles.
But it is seldom explained how such particles can be precisely defined and realized
experimentally. Picking out free particles by saying that they are free of external
forces—notwithstanding the fact that such a characterization already appears in
Newton’s Principia (Newton 1687, p. 416) and in many modern textbooks—is
logically fallacious: the definition of the terms ‘force’ and ‘force-free’ form part of
Newton’s second law, which itself relies on the inertial systems defined in the first
law. In addition, the popular characterization of free particles as those that are far
from any other objects cannot be accepted because it is impossible in any practical
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case to say what distance from other objects would be big enough, especially since
gravity and electromagnetism have (in principle) an infinitely long range.

In contrast to these characterizations by external conditions we try in the
following to present a somewhat new definition of free particles by internal
properties. For this purpose, we start from a very general class of ‘objects’ in nature,
and reduce or specialize in consecutive steps to ever simpler objects, until we reach
so-called inactive test objects with no other physical properties than mass (compare
Pfister 2004). It is often not sufficiently appreciated how kind nature is in supplying
us with ‘objects’, i.e., with subsystems of the universe which possess characteristic
properties (literally in the sense ‘proper to the system’) that can be described and
measured almost without recourse to the rest of the universe, and that these objects
are localized in space, but ‘live’ for an almost infinitely long time. And usually the
same types of objects (with the same or very similar properties) can be found or
produced at any place and at any time. (Obviously there are properties of objects
like colour, temperature and hardness, which have little influence on their motion,
and which are therefore left out of consideration.)

As a first simplification in the class of all objects appearing in nature, a reduction
to inactive objects is surely recommended, i.e., to objects having constant inner
properties, and having no ‘inner motor’ (in contrast to humans, robots, cars,
airplanes, etc.), and not disintegrating during their ‘life’ (in contrast to supernovae,
radioactive particles, etc.). Furthermore, a reduction to ‘test objects’ suggests itself,
i.e., to objects having (ideally) no back-reaction on the rest of the universe. In
practice, small objects are the best candidates for this requirement but, depending
on the circumstances and the questions we ask, planets and stars can also function
as inactive test objects. It is, however, important to stress that we are here concerned
only with classical physics, i.e., we must not take the limit to the even ‘smaller’
elementary particles with their quantum mechanical and non-local entanglement
properties.

Experience with nature tells us that such inactive test objects move on uniquely
predictable paths (one-dimensional submanifolds of the four-dimensional space-
time), i.e., for a given object with given properties, the complete path is—under
given exterior circumstances, i.e., given ‘physical fields’—fixed through an ‘initial’
event, an initial direction (spatial direction and velocity) at this event, and possibly
other initial data (see below). (Mathematically, the dynamics of these objects is ruled
by second order differential equations.) However, in nature there is a great variety of
different classes of inactive test objects which, starting from the same event with the
same initial direction, follow in the future completely different paths, depending
on properties like charge-to-mass ratio, higher mass and charge multipoles, and
possibly other distinguishing properties.

We propose now to characterize the free particles by demanding that they
have as few nontrivial properties as possible. They should have charge q D 0,
magnetic moment � D 0, all higher electromagnetic multipole moments qijk::: D 0,
intrinsic angular momentum j D 0, and all higher mass multipole moments
mijk::: D 0. Furthermore, (almost) every other physical property imaginable, or for
which experimentalists have invented a measuring device, should also be zero. This
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restriction certainly brings about a great simplification because the path of such
an object is indeed determined by the initial event and direction, without giving
additional initial data. (In contrast, for objects with nontrivial higher moments, one
has to give not only the values of these moments but also their orientation relative
to the initial path direction.) The only physical property of the free particle that has
to be nonzero is the massm, or the rest massm0, because otherwise the manifold of
paths through an initial event would be restricted to the three-dimensional manifold
of lightlike paths.

In this way, we arrive at the following:

Definition 1.1. Free particles are inactive test objects with only one nontrivial
physical property: mass.

These free particles and their paths in spacetime are now distinguished by some
‘wonders of nature’ which unfortunately do not come to life in most textbooks:

• Nature provides these nearly featureless objects in a universal manner every-
where and at any time.

• Their paths are independent of the mass value and of many other remaining
‘inner properties’ like chemical constitution. This fact is usually formulated as
‘all bodies fall alike’, or ‘inertial and gravitational mass are equal’, or as part
of Einstein’s equivalence principle. But it is rarely stressed that this property is
already essential for the formulation of Newton’s first law, and for the possibility
of endowing spacetime with a simple and unique inertial structure.

• Free particles are the only objects whose paths can (in the absence of gravity)
function as axes of a unique global coordinate system (in the sense of Lange):
free particles, emanating from an event in different spacetime directions, do
not meet again, in contrast, e.g., to the focusing of charged particle paths
in appropriate electromagnetic fields. In strong gravitational fields, even free
particles can be focused (by gravitational lenses), with the consequence that no
really global inertial systems exist, another fact which is mentioned rather seldom
in mechanics textbooks.

Some of the above arguments, in particular our definition of the term ‘free particle’
[as they appeared also in Pfister (2004)] were criticized in a recent book (Brown
2005) by H. Brown. He asks the question whether it “does not rely too much on
hindsight—whether indeed the definition of the properties that are supposed to have
a null value does not ultimately refer to the very inertial frames we are trying to
construct”. Of course, any of the experiments leading to the classification described
above, will rely on some presuppositions, e.g., on available materials. And if nature
functioned in a totally different way, they might not be possible, or not lead to the
desired results. However, we would like to argue that the existence and the precise
properties of inertial systems are not a prerequisite for our procedure for defining
free particles, as is evident from the fact that concrete laboratory systems are never
exact inertial systems but are exposed to the Earth’s gravity and the Earth’s rotation.
We should also say that a private discussion between H.P. and H. Brown (at the
conference “Beyond Einstein” in Mainz, Germany, September 2008) resulted in the
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agreement that at least some of the critical remarks in Brown (2005) concerning the
paper (Pfister 2004) are based on misunderstandings, and are not maintained in their
sharp form.

1.4 A New Definition of a Straight Line, Connections
with Projective Geometry, and Newton’s Law of Inertia

The term ‘straight line’ is not so innocent and evident as one may naively think. It is
usually based on the technical concept of a rigid rod. But this is surely unsatisfactory
if one is interested in the foundations of mechanics, or of the whole of physics,
because rigid bodies are complicated secondary concepts of mechanics (if not of
quantum mechanics). Furthermore, in celestial mechanics, which was historically
the midwife and the first testing ground for Newtonian mechanics, a straight line
can never be realized by a rigid rod, and in special and general relativity, the usual
concept of a rigid body breaks down anyway.

Instead we distinguish here the straight lines in the host of all path structures
by characteristic relations between their elements. This will be done first in the
usual coordinate-dependent formalism, and afterwards in a (new) purely geometric
and coordinate-independent language. And we will formulate all arguments in
the arena of four-dimensional spacetime, whose ‘points’ represent events, i.e., the
most elementary and idealized experimental facts, like the collision of two ‘point-
particles’. In technical, mathematical terms, spacetime M should be a connected,
paracompact Hausdorff manifold of dimension four, and of differentiability class
Ck.k � 3/, and ‘paths’ should be one-dimensional submanifolds of M , also of
differentiability class Ck.k � 3/. In an arbitrary coordinate system hx�i in M , and
with an arbitrary monotone parameter � on each path x�.�/, the property that the
paths of inactive test objects are uniquely determined by an ‘initial’ event x�.� D 0/

and an initial direction dx�=d�.� D 0/ D v�.0/ in this event has the consequence
that the higher derivatives dix�=d�i .� D 0/, .i � 2/ are already fixed by x�.0/ and
v�.0/, or that one generally has

d2x�=d�2 D f �.x�; dx	=d�/ ; (1.1)

with given, sufficiently differentiable functions f �. A mathematical distinction of
a special path structure is then established by the choice of special functions f �,
and surely the simplest one is the choice f � identically zero. Then, the integration
of (1.1) immediately gives x�.�/ D x�.0/C �v�.0/, i.e., an ensemble of straight
lines. However, this characterization is not invariant under (nonlinear) coordinate
and parameter transformations, a defect that was masterfully denounced in Einstein
(1920):

I quote Galileo’s law of inertia as an example [of the mixing of statements about the
means of description and statements about the object to be described]. It reads in detailed
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formulation necessarily as follows: matter points that are sufficiently separated from each
other move uniformly in a straight line—provided that the motion is related to a suitably
moving coordinate system and that the time is suitably defined. Who does not feel the
painfulness of such a formulation? But omitting the postscript would imply a dishonesty.

Applying a general coordinate transformation x� �! x0�.x�/ and a parameter
transformation � �! 
.�/ to d2x�=d�2 � 0 leads to

d2x0�

d
2
C˘

�

�	.x
0�/

dx0�

d


dx0	

d

D k.
/

dx0�

d

; (1.2)

with the symmetric ‘projective coefficients’

˘
�

�	 D � @2x0�

@x�@x

@x�

@x0�
@x


@x0	 ; (1.3)

and the factor k.
/ D .d2�=d
2/.d
=d�/. The physical meaning of (1.2) is
eloquently characterized by another quote from Einstein (1922, pp. 81–82):

The unity of inertia and gravitation is formally expressed by the fact that the whole left-
hand side of this equation has the character of a tensor (with respect to any transformation
of coordinates), but the two terms taken separately do not have tensor character. In analogy
with Newton’s equations, the first term would be regarded as the expression for inertia, and
the second as the expression for the gravitational field.

Comparing (1.2) with the equation d2x�=d�2 � 0 in the original coordinates and
with the original parameter, one can also say that (four-dimensional Minkowski)
forces which are proportional to the four-velocity v0� D dx0�=d
 or are symmet-
rically bilinear in this variable (with appropriate coefficients) can be ‘transformed
away’. In this connection it may be mentioned that the simplest Minkowski force
K� which cannot be transformed away and which, through

0 D d

d�
c2 D d

d�

�
dx�

d�

dx�
d�

�
� K�v� (1.4)

is compatible with the constancy of the light velocity, is given by K� � F ��v� ,
with an antisymmetric tensor F�� . This is therefore the Lorentz force law of
electrodynamics. (We are not aware that this remarkable characterization of the
Lorentz force appears anywhere in the literature.)

As announced, we will now provide an alternative characterization of straight
lines in purely geometric terms in order to avoid the ‘painfulness’ of the above
coordinate-dependent characterization. The safest way to accomplish this goal is
a reduction to the most primitive, experimentally decidable facts, the events. And
indeed, historically one of the first elements of an exact natural science (of celestial
mechanics) was provided by the observations of the events of planetary occultations,
long before the invention of coordinate systems. On the theoretical side, it was
E. Kretschmann in Kretschmann (1915) who first suggested such a reduction, as a
reaction to Einstein’s wavering between only partly and fully covariant formulations
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of a relativistic theory of gravity. And it was in a letter to P. Ehrenfest on 26
December 1915 (Schulmann et al. 1998, Doc. 173) that Einstein himself gave the
following formulation:

The physically real in the world of events (in contrast to that which is dependent upon the
choice of a reference system) consists in spatiotemporal coincidences (and nothing else!).
Real are, e.g., the intersections of two different worldlines, or the statement that they do not
intersect.

What then is the minimal number of particle paths, and of events of intersection
between them, that allows one to uniquely characterize the straight lines, as
distinguished from other path structures? For one path (e.g., path P7 in Fig. 1.1),
in order to discriminate between ‘straight’ and ‘curved’, one needs at least three
points (events) on it. In order for these points to help formulate some characteristic
(lawful) properties of paths, the points have to be defined not only by the inevitable
crossing of two paths (e.g., in two dimensions) but by the crossing of at least three
paths. (Duality between paths and points!) The simplest ‘incidence figure’ of this
type is easily seen to consist of seven paths and seven points, and it is known in
geometry as the simplest example of a finite projective plane, the so-called Fano
configuration (see, e.g., Stevenson 1972, pp. 22–25). However, a realization of such
a figure is possible only in an abstract ‘plane’ over a field of characteristic two, and
not in the continuous and ordered ‘physical’ plane. In the representation of the Fano
figure in the continuous plane shown in Fig. 1.1, at least one path has to be curved.

A similar situation occurs for figures with eight paths and eight points. The
simplest generic incidence figure that is realizable in a continuous two- or higher-
dimensional space(-time) consists of nine paths and nine points and has been known
since ancient times as the Pappus figure. It also represents one of the basic axioms
of modern projective geometry. (See any standard textbook on projective geometry,
e.g., Kadison and Kromann 1996.) And indeed, a path structure (in two dimensions)
can satisfy the Pappus incidence properties only if it consists of straight lines, as
was first proven in Hilbert (1899). However, here we prefer to consider in detail the
Desargues figure (consisting of ten paths and ten points), because it plays (in some

P1 P2
P3

P3

P4

P4 P5 P5P6

P6

P7 P7

P1

P2

Fig. 1.1 Illustrating the fact that at least seven paths are needed to characterize an invariant
property of a path structure. ‘Closing’ this sketch leads to the standard Fano figure with seven
paths and seven points
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Fig. 1.2 The Desargues
figure for free particle paths
in a flat manifold (but without
an optimally adapted axis
system) or in a curved
manifold (with gravity)

P

P

A

B

BA

A

B

P

e1

e2

e3

e0

respects) an even more fundamental role in projective geometry, and because it is
not confined to two dimensions (see Fig. 1.2).

Three pathsP;P 0; P 00 of the considered path structure emanate from the event e0
in linearly dependent or independent directions. On P one chooses nearly arbitrary
points A;B , equally A0; B 0 on P 0, and A00; B 00 on P 00. The point e1 is the crossing
point of the paths AA0 and BB0 in the ‘plane’ PP0, and e2; e3 are constructed
equivalently. Then the Desargues theorem says that the path e1e2e3 is also a member
of the considered path structure. (In brief geometric terminology, one can say this:
if two triangles AA0A00 and BB0B 00 are in perspective from the point e0, then they are
also in perspective from the line e1e2e3.) As we show below, it is an easy exercise
to confirm that any ensemble of straight lines satisfies the Desargues incidence
properties. We have nevertheless drawn Fig. 1.2 with curved lines because we do
not assume that an optimally adapted system of axes has already been chosen, and
because Fig. 1.2 shall also serve in Sect. 2.3 for a curved manifold.

If the points A;A0; : : : ; B 00 are defined by the vectors A;A0; : : : ;B00 (in some
coordinate system), the center of perspective e0 can be represented as e0 D 	A C
.1�	/B, or as e0 D 	0A0C.1�	0/B0, or as e0 D 	00A00C.1�	00/B00, with appropriate
coefficients 	; 	0; 	00; fulfilling, however, 	 6D 	0 6D 	00 6D 	: Subtraction of the first
two equations, and division by 	 � 	0 6D 0 leads to

	

	 � 	0 A � 	0

	 � 	0 A0 D 1 � 	0

	 � 	0 B0 � 1 � 	
	 � 	0 B D e1 :

Since the coefficients on the left side and on the right side of this equation each sum
to the value 1, this vector lies on AA0 and BB0, and is therefore their crossing point
e1. Equivalently, we have
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	 � 	00 A � 	00

	 � 	00 A00 D 1 � 	00

	 � 	00 B00 � 1� 	

	 � 	00 B D e2 ;

	0

	0 � 	00 A0 � 	00

	0 � 	00 A00 D 1 � 	00

	0 � 	00 B00 � 1 � 	0

	0 � 	00 B0 D e3 :

Herefrom follows

e3 D 	0 � 	

	0 � 	00 e1 C 	 � 	00

	0 � 	00 e2 ;

and since again the coefficients sum to 1 in each part, we see that e3 lies on the
straight line connecting e1 and e2.

Conversely, in his Grundlagen der Geometrie (Hilbert 1899), D. Hilbert suc-
ceeded in building a coordinatization (named ‘Streckenrechnung’) on the geometry
of the Desargues figure (together with the parallel axiom). He showed that this coor-
dinatization satisfies the axioms of the real numbers and that, in these coordinates,
the original paths satisfy linear equations. In this way, straight lines can be uniquely
characterized, in a coordinate-independent manner, solely by projective geometry.
[In this connection, we would like to mention that, even in 1885, L. Lange made the
following remark (Lange 1885a): “Concerning the elegance of the systematic, the
field of mechanics may take an example from projective geometry.” And as H. Weyl
put it in Weyl (1931): “From inertia one can directly read off only the projective
quality, not the affine connection.” See also Sect. 1.5.]

Definition 1.2. Straight lines are an ensemble of paths that fulfil the Desargues
property.

It is, however, worth mentioning that, if one enriches the manifold in which the
Desargues figure lives by a Minkowski metric, one can arrange the construction in
such a way that:

• either all ten paths are timelike, i.e., they can be represented by (free) particles,
• or the ‘first’ nine paths are timelike, but the path e1e2e3 is spacelike, i.e., spacelike

straight lines (and hyperplanes) can be constructed from timelike paths, without
relying on light rays, as in Einstein’s construction of a hyperplane of simultaneity,

• or the triangle sides AA0 and BB0 are parallel light rays in the plane PP0, equally
AA00 and BB00 in the plane PP00 (whence the path e1e2e3 lies at infinity), with the
consequence that also the, e.g., timelike lines A0A00 and B 0B 00 are parallel, and
light reflected between them can establish a so-called geometrodynamical clock,
as first constructed in Marzke and Wheeler (1964), and then simplified in the
direction of our above construction in Castagnino (1968).

The essential content of Newton’s first law is now the following ‘wonder of nature’,
or in Leibniz’ terms the following ‘preestablished harmony’:
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Newton’s First Law. The simplest and most elementary objects of nature, the free
particles, move (in the absence of gravity) on the mathematically simplest paths in
spacetime, the straight lines.

In detail, the first four paths of such a construction define an inertial system.
However, the fact that all other free particles also move on straight lines with respect
to this inertial system, and do so independently of the mass and many other internal
properties of the particles, is one of the most fundamental and most marvellous facts
of nature. This is also a wonderful example [in the words of E. Wigner in Wigner
(1960)] of “the unreasonable effectiveness of mathematics in the natural sciences”.

1.5 Spacetime Structures of Newtonian Physics

In the preceding sections we have clarified in depth the foundation and content of
the law of inertia in Newtonian physics. Free particles and their paths single out a
preferred class of motions which are described relative to some coordinate system
hx�i and within some given geometry, called spacetime M . As Ehlers observed in
the introduction to his talk at the Trieste conference for Dirac’s seventieth birthday
(Ehlers 1973a, p. 71):

Space and time and the even more basic notion of spacetime, and the structures assigned to
them, belong to the most fundamental concepts of science. So far, every physical theory of
some generality and scope, whether it is a classical or a quantum theory, a particle or a field
theory, presupposes for the formulation of its laws and for its interpretation some spacetime
geometry, and the choice of this geometry predetermines to some extent the laws which are
supposed to govern the behaviour of matter, the laws of primary concern to physics.

In this section we show how this preferred set of paths or ‘standard motions’ are
related to various classical, i.e., non-relativistic spacetime geometries, and how they
define their affine structure. Although we have emphasized the purely projective
nature of the law of inertia, giving M the structure of a path space, we will
introduce the notion of a ‘straight line’ by means of an affine connection and a
derivative operator, independently of any metric. [As Giulini remarked in Giulini
(2009, Sect. 2.5), the affine group—the group of affine transformations preserving
straight lines—already emerges as an automorphism group of inertial structures
(determined by the law of inertia) without a privileged parametrisation of spacetime
paths, which is usually done by elementary clocks.] This affine point of view was
put forward especially by Weyl (1919) and later on by Schrödinger (1950).

The presentation given here largely follows the masterful exposition given by
J. Ehlers in Ehlers (1973a,b) and the in-depth analysis of the foundations of
spacetime by M. Friedman in Earman and Friedman (1973) and Friedman (1983),
which originated from the pioneering works of Weyl (1919, Sect. 20), Cartan (1923),
and Friedrichs (1928) in the early stages of general relativity, followed in the 1960s
by Havas (1964, 1967) and Trautman (1965, 1967). [See also the exposition given in
Misner et al. (1973, Chap. 12), and in particular, Boxes 12.2 and 12.3.] In addition,
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this section serves as a kind of preparation for the deduction of the different levels
of geometrical structures of our ‘world’ within Einstein’s general relativity in the
next chapter.

To explore the nature of space and time, and of spacetime, we use mathematical
methods of differential geometry. For the main part, we describe these classi-
cal spacetime theories in the four-dimensional, geometrical language of special
relativity. There are some convincing arguments for such an approach, unusual
to most textbook presentations of classical mechanics, which are based on the
standard 3-vector calculus on some three-dimensional spacelike sections of the four-
dimensional ‘world’. On the mathematical side, a detailed comparison of Newtonian
concepts of space and time with the spacetime structures underlying the relativistic
theories of special and general relativity (which are most naturally expressed in
terms of concepts of differential geometry, and elaborated in detail in Chap. 2) is
facilitated by the use of a common mathematical formalism. Notably, as Ehlers in
Ehlers (1995, p. 175) remarked, it removes “the ‘incommensurability’ of concepts
of different theories, in particular, Newton’s and Einstein’s theories of spacetime and
gravitation”. A common mathematical framework makes it especially clear in which
way the mathematical structures on the different levels of spacetimes are degenerate
special structures of each other. On the physical side, the physical interpretation of
different aspects of Newtonian-like and relativistic theories is now possible in terms
common to all physical theories under investigation. Concerning the law of inertia,
as was pointed out in Earman and Friedman (1973, p. 336):

From the four-dimensional point of view it is hardly surprising that the foundations of the
first law are intimately connected with issues about the structure of spacetime.

As a result of such a four-dimensional geometrical analysis, the prevalent
Newtonian theories emerge, in a sense, “to be as four-dimensional” (Friedman
1983) as special and general relativity, and a covariant formulation—which is
possible for any physical theory, as recognized first by E. Kretschmann in 1917
in Kretschmann (1917)—of Newtonian mechanics is as ‘natural’ as the usual 3-
vector calculus presentation. [Einstein was quite sceptical about the possibility of a
fully covariant and ‘simple’ formulation of Newtonian mechanics (Einstein 1918).]
Conceptually, Einstein’s theory of gravitation is much simpler than almost all non-
relativistic spacetime theories, mainly because there are many more geometrical
objects defined on the associated spacetime manifold, with specific laws and field
equations governing them. To summarize the four-dimensional point of view, we
quote from R. Penrose’s profound analysis of the structure of spacetime in Penrose
(1967, p. 7):

However there can be little doubt that of all views of space and time that have been put
forward up to the present day, the Einsteinian view is the most comprehensive, the most
profound, and also the most accurate.

In this and the following section, we present three classical, non-relativistic
types of spacetime theories and their associated geometrical structures: Leibnizian,
Galilean, and Newtonian spacetime [in the hypothetical absence of gravitation, i.e.,
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in empty (flat) space, and in the presence of gravitational fields]. Surprisingly,
it is possible to give a formulation of Newtonian theory in which gravitational
forces are ‘geometrized away’ in the spirit of general relativity, i.e., the universal
force of gravitation is ‘absorbed’ into the (curved) geometry. Mathematically, this
amounts to incorporating gravity in a now non-flat affine connection of spacetime.
With such a reformulation of Newtonian gravity to hand (of course, possible only
after Minkowski’s unification of space and time in 1908), Einstein’s path towards
a general-relativistic theory of gravity would presumably have required a less giant
step to his final version of general relativity. In the words of Penrose in Penrose
(1968, p. 143) and Penrose (1967, p. 15), respectively:

On the other hand, if Newtonian theory had been reformulated as a space-time theory [. . . ],
then a quite different alteration—namely, to some form of general relativity—would have
appeared as mathematically natural.

If Einstein had never existed but Newton’s gravitational theory had been reformulated as a
space-time theory (a very big “but”!), then the discovering of general relativity would not
seem so very great a step, perhaps not even requiring Einstein’s genius for its achievement!

Furthermore, and along the lines of Klein’s Erlangen program of 1872 as
established in Klein (1872), we discuss the symmetry groups of transformations
or automorphisms (namely the kinematical, the Newtonian, the Galilean, and the
elementary group, which are—in reverse order—successive subgroups), preserving
the various, more and more restricted, geometrical structures on the spacetimes
mentioned above. Where necessary and illuminating, we also give results in the
usual 3-vector formalism.

Common to Leibnizian, Galilean, and Newtonian theory is the notion of a
spacetime or Minkowski’s ‘world’ M , the union of all possible physical ‘events’ or
worldpoints. So, to begin with, M is actually a set. Mathematically, the spacetime is
in fact represented as a four-dimensional, real, connected and differentiable, affine
manifold M . The manifold picture enables one to coordinatize spacetime by a
quadruple of four real numbers (one for time and three for each point in space),
and also to provide coordinate systems hx�i. The basic structure on M is that of a
topology, i.e., roughly speaking a statement about the neighborhood of each point
p 2 M , and open sets U � M . Given the standard (locally Euclidean) topology
of a manifold, following Friedman (1983), we formulate all subsequent structures
and laws as purely local statements, i.e., as field equations, leaving aside (quite
interesting and often difficult) questions about the global aspects and properties of
spacetime.

Furthermore, the manifold M is supposed to have an affine structure or (a
linear and symmetric) connection. This affine connection provides the notion of
an infinitesimal parallel displacement of directions at each point in M , i.e., it
is possible to relate vector spaces (the tangent spaces TpM ) of ‘nearby’ points.
The term ‘affine manifold’ was introduced by H. Weyl (1919, Sect. 15), who
emphasized the independence of the connection from any given metric, e.g., the
whole tensor calculus on manifolds simply rests on the basic idea of an affine notion
of infinitesimal parallel displacement (see also Weyl 1923, p. 17). Mathematically,
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the connection may be introduced by a derivative operator r�, a generalization of
the usual directional derivative of a vector in a Euclidean vector space (see, e.g.,
Friedman 1983, App. 5). For every tangent vector v� of a curve 
.�/ in M with
parameter � , we can measure the changes of direction of the curve itself, namely the
acceleration field,

a� D v�r�v
� D dv�

d�
C 

�

�	v
�v	 D d2x�

d�2
C 

�

�	

dx�

d�

dx	

d�
; (1.5)

with respect to an arbitrary coordinate system hx�i, and with 
�

�	 being the
components of the connection r� relative to this coordinate system, defined by

r@=@x�
@

@x	
D 

�

�	

@

@x�
:

(A curve in spacetime is a one-dimensional submanifold with a parameter associated
with it, whereas such a distinguished parameter does not exist on a path.) Curves
in spacetime satisfying a� D v�r�v

� D 0 are called geodesics. These are also
autoparallels. Geometrically, every tangent direction of the curve is infinitesimally
parallel transported, and the tangent vectors of the curve are constant along
the curve. In an affine manifold, these ‘straight’ worldlines or ‘affine straights’
constitute a privileged class of paths. The affine perspective is put in a nutshell by
A. Trautman in Trautman (1965, p. 103):

There is another fundamental principle of physics that is common to all physical theories so
far put forward. This is that the differentiable manifold of space and time is endowed with
an affine connection whose geodesics form a privileged set of worldlines in spacetime. The
particular affine connection depends on the theory we are considering, but the existence of
an affine connection is common to all theories. It is necessary in order that the fundamental
law of physics can be expressed in the form of differential equations, which is certainly true
of all physical theories.

However, the affine structure does not provide a notion of length and angle. So
far, neither of these have meaning on M .

In order to link space and time in a way specific to the different ‘classical’
physical theories of Newton, Leibniz, and Galileo, this primitive concept of the
actual world has to be endowed with additional, intrinsic geometrical structures.
[For a critical account of this process of structuring spacetime, initially considered
as a set, according to various physical inputs, see Giulini (2009); for details of
the different levels of structure in general relativity, see Chap. 2.] We start with
‘empty’ Newtonian spacetime: space is either completely devoid of any matter or
else matter is assumed to be so sparsely distributed in space that we can, at least
to a good approximation, neglect gravity. In this way, Newtonian spacetime has
the character of a mere rigid background spacetime, in which gravity plays no
dynamical role. In mathematical terms, our manifold M has to be flat or Euclidean,
i.e., the affine manifold M is in fact globally diffeomorphic to the four-dimensional
affine space E4.
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Associated with the affine connection r� is the Riemann–Christoffel curvature
tensor, with components

R
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�	� D @
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�	 C  

��

�


	 �  

�	

�

� ;

in an arbitrary coordinate system hx�i (see also Sects. 2.2 and 2.4 for the definition
of the Riemann tensor in relativistic spacetimes). There is a coordinate system
aroundp 2 M in which the components of the affine connection vanish, if and only
if the curvature tensor vanishes at that point (see, e.g., Laugwitz 1965, p. 109f). In
this case, the geodesic law (1.5) simplifies to

a� D v�r�v
� D d2x�

d�2
D 0 ; (1.6)

whence x�.�/ D v�.0/� Cx�.0/, with constants v�.0/ and x�.0/. These solutions
of (1.6) are just the familiar Euclidean straight lines. The equation of motion (1.6) is
Newton’s law of inertia, and the coordinate system hx�i with  �

�	 D 0 is called an
inertial system. Recall once again, that Newton’s first law does not in fact provide a
privileged parametrisation of spacetime paths, since the structure it bestows upon
spacetime is merely projective. This observation can probably be attributed to
H. Weyl in Weyl (1919) (on p. 324 of the eighth edition of 1993):

If one deprives the metric of its original character, it is my opinion that experience gives no
further clue about how to ascribe an affine connection to the world. Inertial motion merely
indicates a ‘projective nature’, according to which there exists a process of infinitesimal
parallel displacement of directions in themselves.

In the affine point of view, the worldlines of free particles (‘free motions’) are just
given by the geodesics (timelike straight lines) of the affine connection. As Ehlers
put it so clearly in Ehlers (1973a, p. 75):

This axiom is a precise formulation of the law of inertia, which emphasizes its intrinsic,
coordinate-independent content. [: : : Newton’s] law of inertia serves to define the affine
structure of spacetime. The subsequent laws of dynamics presuppose that structure but do
not restrict or enrich the spacetime geometry further.

[See also Straumann (1987, p. 31f) and Trautman (1965, p. 103f), who, with
Ehlers, both emphasize that Newton’s law of inertia is “not a trivial consequence of
Newton’s second law”, but “is in fact one of the most important laws of physics.”]

On M , we have two other distinguished tensor fields, which define the metric
structure of M , namely a temporal and a spatial ‘metric’. First, there exists—unique
up to linear transformations—an absolute time, a continuous linear map t W M !
R with non-vanishing gradient. This Newtonian time function t—mathematically
representing the readings of standard or ‘world’ clocks assigned to an event of the
world—defines the simultaneity relation t.p/ D t.q/, and a time-order t.p/ ? t.q/

between two events p; q 2 M , and furthermore the durations of processes or the
temporal distance jt.p/ � t.q/j between any two worldpoints. Associated with the
coordinate function x0 D t , we have a temporal covector field dt W TpM ! R with
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components given by the gradient of the scalar field t� D @t=@x�, and therefrom
a symmetric, but singular temporal metric dt ˝ dt W TpM � TpM ! R of type
.0; 2/, with components

t˛ˇ D t˛tˇ D @t

@x˛
@t

@xˇ
:

Having fixed the physical unit in which time is measured, the covector field dt
uniquely represents the above-mentioned family of time-functions t , which are fixed
up to the choice of origin only. Every tangent vector X 2 TpM is called future- or
past-directed timelike if dtp.X/ ? 0, and spacelike if dtp.X/ D 0. The latter are
the standard three-vectors x 2 R

3 w TpR
3 in the usual textbook formulations of

Newtonian theory. The tensor field dt ˝ dt assignes a nonzero value

jX j D p
dt.X/˝ dt.X/ D

q
t˛tˇx˛xˇ

only for timelike vectors X D .x0; x1; x2; x3/ D .x0; x/. The temporal metric then
induces a temporal duration or time difference between any two points p; q 2 M
in different subsets (hyperplanes) of simultaneous events

Sp D ˚
e 2 M j t.e/ D t.p/ D �

�
;

given by the above simultaneity relation. Spacetime is stratified in successive three-
dimensional spacelike sections Sp D fX 2 TpM j dtp.X/ D 0g, these being
the level surfaces of the gradient of the scalar field t . The temporal metric also
determines the causal structure, due to the fact that the future and past of any
event e have a common boundary, namely the hyperplane Se representing the
present. Furthermore, we require the covariant derivative of the covector field dt
to vanish with respect to the affine connection, i.e., compatibility with the given
affine structure, which in coordinates reads t˛ˇI� D 0 and t˛I� D 0. In an inertial
coordinate system hx�i, the four-velocity of any timelike curve is well-defined, with

.v�/ D .1; v/ D .1; dx1=dt; dx2=dt; dx3=dt/ :

The acceleration four-vector is (always!) spacelike and has components

.a�/ D .0; a/ D .0; d2x1=dt2; d2x2=dt2; d2x3=dt2/ ;

with respect to an inertial system.
Secondly, to have a notion of length and angle, on each Sp of the above defined

foliation there exists a positive definite spatial metric dl2p which ensures that each
spacelike section Sp—space—is indeed a Euclidean 3-space. Mathematically, dl2p
represents length measurements by standard measuring rods. These ‘inner’ or scalar
products between spacelike vectors are identical on each section. The components of
dl2p with respect to a Cartesian reference frame are given by the familiar Kronecker
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symbol ıik . Physically, the Euclidean geometry of space is maintained by passing
from one instant of time to another. Associated with the three-dimensional metrics
dl2p at each ‘instant’ Sp , there is a symmetric, but also singular tensor field ds2 W
T �
pM �T �

pM ! R of type .2; 0/ on the whole manifold M , with components s˛ˇ

relative to a coordinate system hx�i. [See, e.g., Friedman (1983, p. 76ff) for details
of the construction of this tensor.]

As noted by Malament (1986a, Sect. 2), up to now, the affine structure or
connection only gives a notion of ‘constancy’ of vectors, e.g., of the acceleration
four-vector of a timelike curve defined by (1.6), but no information about the
‘magnitude’ of this vector. The spatial metric s˛ˇ serves to assign such a length to
spacelike vectors only, but not to timelike ones! In particular, inserting the covector
dt into the singular metric ds2 results in s˛ˇt˛tˇ D 0, which is equivalent to the
‘orthogonality’ relation s˛ˇt˛ D 0. As for the temporal metric, we require the spatial
metric to be compatible with the flat connection, s˛ˇ I� D 0. Now, the ‘metrical’
character of the spacetime M is fixed by the pair of the two singular metric tensors
.dt˝dt; ds2/, which is called a Newtonian metric. In a Cartesian coordinate system,
the metric structure on M is given by .t˛/ D .ı0˛/ D .1; 0; 0; 0/ and the matrix
.s˛ˇ/ D diag.0; 1; 1; 1/.

In summary, a collection (M ;r�; t˛ˇ; s
˛ˇ), satisfying the ‘compatibility’ and

‘orthogonality’ conditions stated above is called a classical spacetime structure.
Physically, the compatibility conditions state agreement upon the notion of ‘con-
stancy’ induced by either the metric or the affine structure, both coexisting on the
manifold M . In detail, spatial compatibility r� s

˛ˇ D 0 ensures that, if some
‘infinitesimal’ measuring rod (represented by a spacelike vector connecting two
simultaneous events) does not experience any motion relative to an observer (rep-
resented by a timelike curve)—the state of motion being determined by r�—then
the ruler also experiences no change in length (as measured by s˛ˇ). Equivalently,
temporal compatibility r� t˛ˇ D 0means that the ‘temporal length’ (as measured by
t˛ˇ) of a constant vector field—again determined by r�—along any timelike curve
is constant.

To define a standard of absolute rest and of no rotation—a ‘rigging’ of Newtonian
spacetime—a further geometrical object is needed, viz., a distinguished, but essen-
tially arbitrary timelike vector field t, which we normalize by dt.t/ D t�t

� D 1

in order that two points e, p D e C tt are separated by the time span t , i.e.,
Newtonian clocks exactly measure the coordinate time t . Compatibility of t with
the connection, i.e., t˛ I� D 0, states that the timelike lines of our rigging are
in fact geodesics. On the one hand, the vector field t defines a time axis, called
‘absolute time’ T . On the other hand, it fixes events e in different space sections
Se ¤ Sp to be at the same point in space at different times by the host of all
timelike lines fp 2 M jp D e C tt; t 2 Rg. This family of non-intersecting
geodesics, slicing the planes of simultaneity, thereby define ‘absolute rest’ [see
Fig. 1.3, adapted from Friedman (1983)]. From all “relative spaces”—in the words
of Newton—this (arbitrary!) vector field t essentially singles out one to be ‘absolute
space’ S .
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Fig. 1.3 Rigging of Newtonian spacetime M in 2 C 1 dimensions by a timelike vector field
t, defining a family of timelike geodesics: for any two points e; q 2 M in different sections
Se and Sp , the distance between these two points is just the distance between points p and q
within the same spacelike section Sp , with p located at the same space point as e according to
the rigging. The distance between e and q is then measured by the three-dimensional metric dl2p
in Sp . However, this construction is ‘singular’, because the distance between, e.g., the different
spacetime points p and e vanishes

According to .dt; t/, for every vector X 2 TpM we now have a unique
decomposition: X D dtp.X/t C x with dtp.x/ D 0 (see, e.g., Kriele 1999).
Therefore, the projection x of X onto the 3-vector space Sp is spacelike. A
four-vector X with jxj D 0 is called null. A particle, represented by a timelike
worldline, with null tangent vectors is therefore at ‘absolute rest’, i.e., all points on
the trajectory are at the same space point. In particular, as emphasized by Friedman
(1983, p. 74f),

The rigging is not chosen to be ‘orthogonal’ to the planes of absolute simultaneity; rather
the choice of rigging itself defines such ‘orthogonality’.

Collecting all our local field equations of Newtonian spacetime, we end up with a
system of six equations for four geometrical objects (tensor fields), namely a linear,
symmetric connection  �

�	 and associated derivative operator r�, a temporal and a
spatial (Newtonian) metric (t˛ˇ; s˛ˇ), and one vector field t�, defined on the entire
manifold M :

R˛ˇ�ı D 0 ; (1.7)

t˛I� D 0 ; (1.8)

s
˛ˇ

I� D 0 ; (1.9)
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s˛ˇt˛ D 0 ; (1.10)

t˛I� D 0 ; (1.11)

t�t
� D 1 : (1.12)

According to (1.7), the four-dimensional spacetime M is essentially flat. Equa-
tions (1.8), (1.9), and (1.11) form a group of ‘connection axioms’, in particular
expressing compatibility of the affine and the (spatial and temporal) metrical
structure. The ‘orthogonality’ relation between the temporal covector field and
the spatial metric is expressed by (1.10). The remaining (1.12) is a kind of
‘normalization’ of the rigging of spacetime.

Summarizing the assumptions made above, Newtonian spacetime—as a four-
dimensional manifold—is structured geometrically in the following way: M
is stratified into ‘horizontal’ sequences of Euclidean hyperplanes of absolute
simultaneity S (three-dimensional ‘absolute space’ or ‘absolute rest’) and fibred
‘vertical’ by the rigging T (one-dimensional ‘absolute time’) [see Fig. 1.4, adapted
from Ehlers (1973a)]. Mathematically, the flat manifold M , diffeomorphic to the

Fig. 1.4 Newtonian spacetime M in 2C 1 dimensions—one space dimension being suppressed:
stratification of affine space E4 into absolute space S w E

3 and absolute time T w E
1. Illustrated

are three successive planes of absolute simultaneity at different times t D �1 < �2 < �3. On
each spacelike section, distance measurements are possible due to a spatial Euclidean metric dl2p .
The time difference between any two different 3-spaces is measured by a Newtonian clock, the
covector field dt . Vector parallelism of 4-vectors A and B is provided by Newton’s first law, which
is encoded in a flat affine connection on M . The worldline of observer P is parallel to the timelike
vector field t, defining absolute rest, with the tangent vectors of P being null. The axes e1; e2 of
a Cartesian coordinate system transported along this curve are non-rotating (Newtonian frame),
representing an inertial system. The worldline of Q is a straight line, Q moving with constant
velocity (with the tangent vectors of Q non-null), whereas observer R is accelerating
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affine space E
4, has a product structure M ' E

1 � E
3 ' T � S , the Cartesian

product of all instants of time T and all space points S , with E
1 a one-dimensional

affine space and E
3 an affine 3-space (in fact these affine spaces are Euclidean

spaces). In essence, Newtonian spacetime is a quadruple .E4; t; dt; ds2/ satisfying
the local field equations (1.7)–(1.12). From the four-dimensional point of view,
Newtonian theory, although ostensibly quite intuitive from a physical standpoint,
turns out to be a rather complicated mathematical concept!

Next, we consider the spacetime structure of classical, non-relativistic kinemat-
ics, referred to as Leibnizian spacetime by Ehlers in Ehlers (1973a, 1995). In this
world model—opposed to Newton’s theory—the existence of a standard of absolute
rest and no rotation is negated on the basis of the invariance of physical phenomena
with respect to velocity transformations, as already mentioned in Sect. 1.1, i.e., the
relativity of motion. Mathematically, there is no notion of an infinitesimal parallel
displacement along timelike paths on M , i.e., no vector parallelism of 4-vectors.
This lack of an affine structure in Leibnizian spacetime has the consequence that
physically there are no preferred motions (no straight lines) or inertial systems (non-
rotating reference systems) [see Fig. 1.5, adapted from Ehlers (1973a)]. So, in fact,
M is not an affine manifold. As in the Newtonian case, M is flat, and we have
a metrical structure on M : again an absolute time function t and corresponding
covector field dt , and an associated singular temporal metric dt ˝ dt . Further, in

Fig. 1.5 Leibnizian spacetime M in 2C 1 dimensions—one space dimension being suppressed:
illustrated are three successive planes of absolute simultaneity at different times t D �1 < �2 < �3.
On each spacelike section, distance measurements are possible due to a spatial Euclidean metric
dl2p . The time difference between any two different 3-spaces is measured by a world clock, the
covector field dt . Vector-parallelism of 4-vectors is not defined, due to the lack of an affine
connection on M . In contrast, there is standard R

3-parallel transport of 3-vectors C and D in
each hyperplane. The relative velocity v or acceleration a between two observers P and Q are
spacelike vectors and hence well-defined
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all the spacelike sections Sp of absolute simultaneity there exist identical spatial,
Euclidean metrics dl2p, which are again merged into a single, singular tensor field
ds2 on the whole manifold M , with s˛ˇt˛ D 0 to mesh with the temporal covector
field dt .

Compared to the previous model of the world, Leibnizian spacetime is a rather
straightforward setting. As Ehlers remarks aptly in Ehlers (1973a, p. 75):

Leibniz’s spacetime, the spacetime of nonrelativistic kinematics, has less structure than
Newton’s. [: : :] Leibniz’s kinematical spacetime has not enough, Newton’s dynamical
spacetime has too much structure.

In essence, this structure is well suited from a relational point of view—in this
way realizing Leibniz’s relative conception of space—since it is only meaningful
to make relative statements, e.g., about the relative velocity, acceleration, angular
velocities, etc., between two observers. [See Earman (1989) for an overview of
different concepts of classical spacetimes, their structures, invariants, and questions
which it is meaningful to ask in these theories only.]

Lange’s work on the law of inertia, as outlined in Sect. 1.2, provided the profound
insight that absolute space S and absolute rest are in fact superfluous elements of
Newton’s theory, which are not presupposed by nature. The world model which
rests upon this change in structure, retaining the stratification of spacetime into
hypersurfaces of constant ‘absolute time’ (planes of absolute simultaneity), is
Galilean spacetime, the spacetime of classical dynamics. Mathematically, Galilean
spacetime is readily obtained from Newton’s spacetime by omitting the timelike
vector field t which defines ‘absolute rest’ and the relation of ‘occurring-at-the-
same-place’. As a first consequence, the notion of ‘rest’ is only meaningful relative
to a single inertial observer. A particle at rest relative to a particular inertial reference
system is generally moving uniformly with respect to another inertial system.
Secondly, for any two points p; q 2 M in different hyperplanes, the distance
between these points is meaningless because “only simultaneous events have an
unambiguous spatial distance, in consequence of the ‘relativity of space’, i.e., the
absence of any objective criterion for two nonsimultaneous events to happen at ‘the
same’ space point” (Ehlers 1973b, p. 4).

As in Newtonian theory, space in our Galilean world has a Euclidean geometry
and the affine manifold M is flat. The field equations governing Galilean spacetime
boil down to (1.7)–(1.10) from Newtonian spacetime, with all the structures
(except the rigging) already known from Newtonian theory. In essence, a collection
.E4; dt; ds2/, is called a Galilean spacetime. The metrical character of M is again
fixed by a pair of singular metric tensors (t˛ˇ; s˛ˇ), which is called a Galilean metric
on M . Still, the worldlines of privileged objects, ‘free particles’, correspond to
privileged paths, ‘free motions’ [see Fig. 1.6, adapted from Ehlers (1973a)]. These
motions are determined by the affine structure via the geodesic law of (1.5) which,
in an inertial system reduces to (1.6): free particles move uniformly on a straight
line!

Finally, to conclude the analysis of classical, non-relativistic spacetimes, we clas-
sify the groups of transformations preserving their different geometrical structures,
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Fig. 1.6 Galilean spacetime M in 2 C 1 dimensions—one space dimension being suppressed:
illustrated are three successive planes of simultaneity at different times t D �1 < �2 < �3. The
lack of a distinguished timelike vector field t forces one to abandon absolute space S and absolute
‘rest’. A statement about being at ‘rest’ is only meaningful relative to a single inertial observer.
The distance measured by dl2p in Sp is meaningful only for two points p and q in this plane of
absolute simultaneity. Parallelism of timelike 4-vectors A and B and of spacelike 4-vectors C and
D is established. The worldlines of particles P and Q in uniform motion are straight (defined by
the affine structure and Newton’s first law), whereas observer R is accelerating

a group-theoretical approach in the spirit of Klein’s programme mentioned in the
introduction to this section (see Ehlers 1973a,b and Earman 1989, Chap. 2).

To begin with, we consider Newtonian spacetime (in the absence of gravity),
i.e., .E4; t; dt; ds2/ with its global Cartesian product structure T � S of time and
space. The group of automorphisms is the direct product of dilations, rotations, and
translations of S with the affine group of T , referred to by Weyl (1919, Sect. 20)
as the ‘elementary group’E in space and time. Mathematically, this is a 9-parameter
Lie group: two inertial coordinate systems hx�i and hx0�i, used to label events, are
related to each other by the mappings xj ! x0j D Rj kx

k Ccj (a rotation followed
by a translation in space), xj ! x0j D dxj (a dilation in space), and t ! at 0 C b

(a dilation followed by a translation in time), where Rj k is a time-independent
orthogonal matrix, and a > 0, b, c, and d > 0 are constants. [Disregarding
space and time dilations, the symmetry group of Newtonian spacetime is a further
restricted, 7-parameter Lie group, the semidirect product of the symmetry group
of rigid motions in space, the Euclidean group, and the time translation group
(Friedman 1983, p. 84ff).]

The elementary group E is a subgroup of the Lie group G, the 10-parameter
invariance group of Galilean spacetime or ‘Galilean group’, and it is also the
invariance group of the laws of classical mechanics according to Galileo’s principle
of relativity (see Sect. 1.1). Due to the relativity of motion, ‘Galilean frames’
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transform according to the well-known Galilean transformations, xj ! x0j D
Rj kx

kCvj tCcj (a rotation followed by a velocity transformation and a translation
in space), and t ! t 0 Cb (a shift in time) withRj k , b, and cj as above and vj being
further constants.

The most general symmetry transformations within our (flat) non-relativistic
spacetimes comprise the ‘kinematical group’ K, the invariance group of Leibnizian
spacetime. This group is not a Lie group since, besides three parameters, its
elements, the transformations xj ! x0j D Rj k.t/x

k C cj .t/ and t ! t 0 C b

relating the coordinates of two reference frames, depend on six real functions of
time, namely a time-dependent angular velocity and a time-dependent translation
velocity.

In summary, the three groups of spacetime automorphisms are successive
subgroups with E � G � K. As observed by Earman (1989, p. 36), “as the space-
time structure becomes richer, the symmetries become narrower”, or in the words
of Friedman (1983, p.64), “the larger the symmetry group, the fewer the absolute
elements postulated by a given [spacetime] theory”.

In the next section we analyze Newtonian spacetime in the presence of gravity
(Newton–Cartan or ‘general non-relativistic’ spacetime). This is described essen-
tially by a non-flat connection. As we will see, in such a curved spacetime model,
there are no longer any global inertial frames, only local ones. The automorphisms
comprise time-independent rotations, but time-dependent translations, xj ! x0j D
Rj kx

k C cj .t/ and t ! t 0 C b, these being elements of the ‘Newtonian group’
N. The corresponding (non-rotating) coordinate systems are called ‘Newtonian
frames’. We thus get the hierarchical succession E � G � N � K characterizing
our different spacetime geometries. In the words of Ehlers (1973a, p. 79), this
constitutes

[: : :] a relation which indicates in a condensed form the evolution of spacetime concepts
at the nonrelativistic level. Whereas the transition from E to G represents the preliminary
compromise between the absolutist Newton (E) and the relativist Leibniz (K), the step from
G to N—or from a flat to a curved connection—is a (somewhat delayed) response to Mach’s
criticism of the unfounded distinction between inertia and gravity.

1.6 Newton’s Law of Gravitation, and Poisson’s Equation

In this section gravity enters the scene by transition from hitherto empty space to
a ‘matter filled’ world. First, we reformulate Newton’s law of gravitation in its
local differential form, namely Poisson’s equation, in a four-dimensional, geometric
setting, as first undertaken in Cartan (1923) and Friedrichs (1928). We shall
also make some brief remarks on Newton’s second law. Next, we illuminate the
characteristic and special features of Newton’s inverse-square law of gravitation,
and its observational and experimental evidence. Finally, we outline some still open
problems in connection with static and rotating stars in Newtonian gravity, the latter
probably being the most common visible objects in our universe.
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To begin, we try to incorporate gravity in a satisfactory way into the spacetime
geometry. Conceptually, we proceed by passing from kinematics to dynamics. As
geometric structures for Newtonian theory in the presence of gravity we choose,
following Ehlers (1973a) and Friedman (1983, Sects. III.3 and III.4), from our
three nonrelativistic spacetime models of the previous section those of Galilean
spacetime. [For a very recent, concise mathematical textbook presentation of the
‘geometrized’ formulation of Newtonian gravitation theory, see also Malament
(2012, Chap. 4).]

A particle with inertial mass mi and four-velocity v�, subjected to a force field
F�, obeys the law of motion

mia
� D mi.v

�r�v
�/ D mi

�
d2x�

dt2
C 

�

�	

dx�

dt

dx	

dt

�
D F � ; (1.13)

where F � is spacelike. In an inertial system .F �/ D .0;F/, and (1.13) is just
Newton’s second law F D mia in standard 3-vector notation. [The proportionality
of force and acceleration in Newton’s second law has been tested in the limit of
small forces and accelerations by Gundlach et al. (2007) down to accelerations
of 5 � 10�14 m/s2.] If the particle with passive gravitational mass mg moves in
a gravitational field with gravitational field strength g D �r˚ and associated
gravitational potential˚ , we have in the spacelike sections of absolute simultaneity,
and with respect to a non-rotating frame of reference, miRr D �mgr˚ C F, where
F subsumes all non-gravitational force fields. The dynamical field ˚ is governed
by an elliptic differential equation, namely Poisson’s equation �˚ D 4�%, where
the scalar field % is the mass density and the single source of the gravitational field
in Newtonian physics. (In particular, and in contrast to general relativity, there are
no contributions coming from any momentum, or even stresses.) In empty space,
Poisson’s equation reduces to the familiar Laplace equation �˚ D 0, whose
solutions ˚ are the so-called harmonic functions.

It is a standard textbook calculation to transform Newton’s second law F D mia
from an inertial frame into a translationally and rotationally accelerated, noninertial
reference frame (see, e.g., Marsden and Ratiu 1999, Sect. 8.6), with the result

Rr D mg

mi
g � 1

mi
F � a � P! � r � 2! � Pr � ! � .! � r/ ; (1.14)

where a and ! are the translational and rotational accelerations, respectively,
relative to the inertial frame. The last three terms on the right-hand side of (1.14)
are the well-known Euler, Coriolis, and centrifugal accelerations. As emphasized
in Ehlers (1973b), if nature reveals that the ratio mg=mi is a universal constant,
it is impossible to measure separately the gravitational field strength g and the
translational acceleration a, but only the combination g�a. Therefore, already at this
level, it is quite clear, that a division into pure gravitational and pure translational
acceleration fields is unjustified on empirical grounds.
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Now, in the four-dimensional formulation on the fixed Galilean spacetime, we
get a system of five equations for five geometrical objects, namely a flat, linear,
symmetric affine connection 

�

�	, a pair of singular, symmetric (temporal and
spatial) metrics .t˛ˇ; s˛ˇ/, and two scalar fields, the gravitational potential ˚ and
the mass density % (see Earman and Friedman 1973 and Friedman 1983, Sect. III.3).
The first four equations govern Galilean spacetime in the (hypothetical) absence
of gravity, as specified by (1.7)–(1.10) of the previous section, and these are
complemented by the four-dimensional generalization of Poisson’s equation, viz.,

s˛ˇ˚I˛Iˇ D 4�% : (1.15)

Particles solely under the influence of gravity follow spacetime paths obeying

mi

�
d2x�

dt2
C 

�

�	

dx�

dt

dx	

dt

�
D �mg s

��˚I� : (1.16)

As announced in the introduction to Sect. 1.5, we try to incorporate the gravitational
force and the potential into the geometry of spacetime, i.e., to ‘geometrize away’
gravity in the spirit of general relativity. The key observation is, that the mass
cancels from the equation of motion (1.16) obeyed by material particles acted on
only by a gravitational force. This is due to the observational fact that the inertial
and gravitational mass are equal, i.e., mi D mg.

Today, this equality of inertial and gravitational mass has been verified by a rotat-
ing torsion balance experiment (using beryllium and titanium test bodies) with the
exceptional accuracy of jmg �mij=mi < 2 � 10�13 by Schlamminger et al. (2008).
Future free fall tests with satellite based experiments like MICROSCOPE (MICRO-
Satellite à traînée Compensée pour l’Observation du Principe d’Equivalence) and
STEP (Satellite Test of Equivalence Principle) expect to increase accuracy to 10�15
and 10�18, respectively. For an up-to-date textbook presentation of experiments
designed to test the equivalence principle, from early measurements using pendu-
lums by Galileo and Newton, through the first torsion balance experiment by Eötvös
in 1890, to modern free fall experiments, see Ohanian and Ruffini (2013, Sect. 1.6).

In the spacelike sections of absolute simultaneity, and with respect to suitable,
so-called ‘non-rotating’ or ‘Newtonian frames’ of reference, free fall motion now
reads Rr D �r˚ (see Ehlers 1973b and Friedman 1983, Sect. III.4). In the presence
of gravity these ‘force-free motions’ constitute a preferred set of paths or ‘standard
motions’: All particles with the same initial conditions (same position and velocity)
move, irrespective of their masses, in the same way. Newton’s second law now may
be formulated as

m.Rr C r˚/ D F : (1.17)

We quote the central idea of this programme from Ehlers (1973b, p. 5) [see also the
related remarks in Ehlers (1973a, p. 77)]:
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The transition from kinematics to dynamics consists essentially of singling out a particular
class of motions as standard motions which are considered as force-free, and then to define
for all motions differing from standard motions forces in terms of accelerations relative
to these standard motions. [: : :] The splitting of the left-hand side of [(1.17)] into an
inertial term mRr and a gravitational term mr ˚ is frame-dependent and has no objective
significance.

In this way the left-hand side of (1.17) defines (via Newton’s second law) the
right-hand side, the force function F. The relative acceleration of an arbitrary motion
with respect to the standard motions is caused by this force.

In electrodynamics an equivalence between the ‘coupling factor’mg on the right-
hand side of (1.16) and the (inertial) mass mi of the particle, is not true. Charged
particles with charge e follow paths obeying

mi

�
d2x�

dt2
C 

�

�	

dx�

dt

dx	

dt

�
D e F �

�

dx�

d�
; (1.18)

where F �
� is the electromagnetic field tensor. In general, the ‘coupling factor’ e

is very different from the particle’s mass mi, i.e., the ratio e=mi is not a universal
constant. (See, however, the remark in Sect. 1.4 to the effect that the electromagnetic
force is, in some respect, the simplest force which is not geometrizable, but which is
compatible with the constancy of the light velocity.) This kind of ‘non-equivalence’
is valid for all other kinds of interactions known in nature, and demonstrates the
very distinctive nature of gravity.

Due to the proportionality of inertial and gravitational mass, we can replace, in
our four-dimensional spacetime formulation, the flat connection by a nonflat one,
whose geodesics are just the trajectories of freely falling particles. These ‘free falls’
constitute, as mentioned above, a new privileged class of motions (compared to
the ‘free motions’ in the hypothetical absence of gravity, which are the standard
motions in the spacetime theories elaborated in Sect. 1.5). Following P. Havas in
Havas (1964, 1967), we write this new, curved affine connection  �

�	 D �
�

�	C˝
�

�	.
Here ��

�	 is the previous flat and integrable connection, i.e., R��	�.�/ D 0, and
˝
�

�	 D t�t	s
��˚I� D t�	s

��˚I� . In general, and in contrast to general relativity,
neither the splitting of this connection into an ‘inertial’ part��

�	 and a ‘gravitational’
part ˝�

�	 (determined by the scalar field ˚), nor the flat connection ��

�	 is unique
(unless special boundary conditions are imposed, see below). Any other potential �
satisfying �I�IŒ� t	� D 0 determines another flat connection  �

�	 � s�
�I
 t� t	. Now,
with this new connection (altering the affine structure of the spacetime), (1.16) reads

a� D v�r�v
� D d2x�

dt2
C 

�

�	

dx�

dt

dx	

dt
D 0 ; (1.19)

which describes geodesic motion on the henceforth curved spacetime manifold M .
With respect to the above mentioned (non-rotating) Newtonian frames of reference,
we have  i

00 D ˚;i and all other  �

�	 D 0. Effectively, the gravitational potential ˚
has been ‘absorbed’ through˝�

�	 into the geometry, i.e., into the affine structure of
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Fig. 1.7 Newtonian theory in the presence of gravity. Upper: Trajectory of a material (point)
particle under the influence of an exact (gravitational) spatial vector force field g D �r ˚ ,
according to the equations of motion in (1.13) and (1.16). Inertia is represented by a flat (integrable)
affine structure or connection. Lower: Geodesic motion in a curved manifold, with gravity
‘absorbed’ into the geometry of spacetime, according to (1.19) with a curved (non-integrable)
affine connection  �

�	 D �
�

�	 C˝
�

�	. The first graphic illustrates the standard or ‘traditional’ view
of most textbook presentations, while the second depicts the alternative formulation of Newtonian
theory in the geometric spirit of Einstein’s general relativity. In both cases, the single source of
gravity is the mass density % and the gravitational potential is related to it by Poisson’s equation

spacetime. The nonflat affine connection becomes a dynamical object depending on
the gravitational potential and the mass density, and is now the basic element in this
spacetime theory of gravity (Fig. 1.7). This has been masterfully phrased in Ehlers
(1973b, p. 9f) and Ehlers (1973a, p. 78):

Summarizing one may thus say that the Eötvös–Dicke experiment suggests that the
gravitational field is not a (frame-independent) vector field, but a non-integrable symmetric
connection, whose geodesics are the free fall trajectories, a conclusion which anticipates
one of the main ingredients of Einstein’s general theory.

Whereas formally the local laws of Cartan’s theory of spacetime, gravity, and dynamics
[: : :], if expressed with respect to non-rotating coordinate frames, do not differ from those of
standard Newtonian theory as given in the textbooks, conceptually it embodies an important
advance by denying the separate existence of an integrable affine connection representing
the inertial field and a vector field representing gravitation, and introducing instead of these
two structures a single non-integrable connection representing both inertia and gravity. An
empirically unjustifiable, fictious distinction has thereby been removed, and the true nature
of gravity as a connection has been recognized.

The corresponding (nonvanishing) curvature tensor has components

R��	�. / D 2t�s
�
˚I
 IŒ	t�� ;
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with the properties tŒ
R���	� D 0, and s�
R�	
� D s�
R��
	, which in turn
imply the existence of a potential ˚ and a flat connection��

�	 such that the nonflat
connection satisfies  �

�	 D �
�

�	C˝�

�	, andR��	�. / as stated above (see Trautman
1965, 1967). With respect to a Newtonian reference frame, we have Ri0k0 D ˚;ik
and R��	� D 0 otherwise. Calculating the Ricci tensor, and noting (1.15), we now
get a four-dimensional spacetime version of Poisson’s equation, formulated first in
Friedrichs (1928):

R��. / D R
�
�. / D t��s

�˚I
 I� D 4�%t�t� :

With this change in the affine structure of spacetime—called Newton–Cartan theory
(or ‘general-nonrelativistic spacetime’ by Ehlers)—our alternative formulation of
Newtonian theory under the influence of gravity is a collection .M ;r�; dt; ds2; %/
with a set of local field equations. We have a dynamical, linear and symmetric,
affine, curved and non-integrable connection  �

�	, a pair of singular, symmetric
metrics .t˛ˇ; s˛ˇ/, and a scalar field % specifying the distribution of matter [see
also Misner et al. (1973, Box 12.4), and the ‘geometrization lemma’ in Malament
(1986a, p. 191)], and these satisfy

tŒ
R
˛
��ˇ� D 0 ; (1.20)

s˛
R�ˇ
� D s�
R˛�
ˇ ; (1.21)

t˛I� D 0 ; (1.22)

s˛ˇ I� D 0 ; (1.23)

s˛ˇt˛ D 0 ; (1.24)

R˛ˇ D 4�%t˛tˇ : (1.25)

Material particles in ‘free fall’, i.e., affected only by gravitational forces, follow
geodesic motion according to (1.19) in a now curved manifold. Although the sec-
tions of absolute simultaneity—the spacelike hypersurfaces representing space—are
still flat, or Euclidean, our four-dimensional spacetime geometry is essentially
non-Euclidean. [According to Malament’s spatial flatness proposition (Malament
1986a, p. 188), Poisson’s equation in its geometrized formulation of (1.25) already
implies spatial flatness in any classical spacetime model; see also Künzle (1972)].
Hence, inertial systems may no longer be characterized by the vanishing of the
components of the affine connection. There simply does not exist a privileged class
of exact global inertial coordinates with respect to which  �

�	 D 0 in general. In
the presence of gravity it is only possible to define local inertial frames. The local
field equation (1.20) may be called with Ehlers the ‘Newtonian restriction’ or the
‘law of existence of absolute rotation’ (see Ehlers 1981, p. 72 and Ehlers 1991,
Sect. 4). This condition ensures that our spacetime model really represents standard
Newtonian theory proper, but not a more generalized non-relativistic gravitational
theory. If we impose some additional, global conditions, e.g., the gravitational field
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and potential of an isolated source tend to zero far from the system (i.e., some
suitable conditions of asymptotic spatial flatness, thereby replacing the ‘Newtonian
restriction’ condition), the notion of a well defined inertial system (as in the absence
of gravity) is restored asymptotically (see Trautman 1965, 1967). In particular, in
Newtonian cosmology, where true ‘isolated’ or ‘island’ systems never exist (e.g.,
cosmological models with spatially homogeneous or asymptotically homogeneous
matter distribution), these global assumptions may not be achievable.

We summarize our efforts to geometrize Newtonian gravitation theory and its
significance by a quotation from Malament (1986a, p. 181) [see also the associated
remarks in Malament (2012, p. 248f)]:

First, it shows that various features of general relativity, once thought to be uniquely
characteristic of it, do not distinguish it from Newtonian theory. On reformulation the
latter, too, is a ‘generally covariant’ theory of four-dimensional space-time structure. As
in general relativity, gravity is interpreted geometrically. Rather than thinking of particles
as being deflected from straight trajectories by the presence of a gravitational potential,
one thinks of them simply as traversing geodesic trajectories in curved space-time. What
seemed a mysterious ‘force’ is now nothing but a manifestation of space-time curvature.
Also as in general relativity, space-time becomes ‘dynamical’ under the reformulation.
Rather than being a fixed, invariant backdrop against which physics unfolds, space-time
affine structure participates in the unfolding. Curvature is dynamically correlated with the
presence of matter according to Poisson’s equation.
Second, the work of Cartan, Friedrichs, and others clarifies the gauge status of the Newto-
nian gravitational potential. In the geometric formulation of Newtonian theory one works
with a single (curved) affine structure. It can be decomposed into two pieces—a flat affine
structure and a gravitational potential—to recover the standard formulation of the theory.
But in the absence of special boundary conditions, the decomposition will not be unique.
Physically, there is no unique way to divide into inertial and gravitational components the
forces experienced by particles. Neither has any direct physical significance. Only their
‘sum’ does. (This is one version of the ‘equivalence principle’.) It is an attractive feature of
the geometric reformulation that it trades two gauge quantities for this sum.
Third, the work under discussion provides the means with which to make clear geometric
sense of the standard claim that Newtonian gravitational theory is the ‘classical limit’ of
general relativity. One considers an appropriate one-parameter family of relativistic models
.M; gab.	/; Tab.	// satisfying Einstein’s equation, defined for 	 > 0, and then proves that
in the limit as 	 ! 0 a classical model .M; ta; hab;ra; %/ satisfying (the recast version of)
Poisson’s equation is defined. Intuitively, as 	 ! 0, the null cones of gab.	/ ‘flatten’ until
they become degenerate.

The last item here refers to the fact that, within Ehlers’ so-called frame theory
(Ehlers 1981, 1991) for 	 D 0;G > 0, Poisson’s geometric field equation
R˛ˇ D 4�%t˛tˇ is in a mathematically precise way the limit of Einstein’s field
equations. [In this ‘classical limit’ of general relativity, Newtonian gravitational
theory implies, according to the spatial flatness proposition mentioned above, that
space is flat (Malament 1986b)!] As Ehlers emphasized, such a rigorous formulation
of a ‘limit relation’ between Newton’s and Einstein’s theories of spacetime and
gravitation is especially important, and most satisfying, since although both theories
are extremely successful in their range of validity—the latter superseding the
former—they nevertheless rest upon radically different mathematical concepts and
physical terminology. This even more so since another quite important transition,
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the transition from the (microscopic) quantum regime to the classical (macroscopic)
‘world’ is much less well understood, and as yet there is no real consensus on any
kind of limit relation between classical and quantum physics.

Finally, the importance of the Newton–Cartan or general-nonrelativistic space-
time model constructed above in physics is once again best exposed by Ehlers
(1973a, p. 79) (see also Rosen 1972):

All of nonrelativistic physics including quantum mechanics can be reformulated without
difficulty within the framework of general-nonrelativistic spacetime. [: : :] All the non-
gravitational local laws have, in local inertial frames, the same form as in the gravity-free
special spacetime. Thus Einstein’s strong principle of equivalence is incorporated satisfac-
torily (as far as slow motion, low energy phenomena are concerned) into nonrelativistic
physics.

Although we were able to formulate Newtonian gravitation theory in a four-
dimensional spacetime setting without recourse to a ‘gravitational force’, and while
general relativity also ends up abandoning the concept of a force altogether, we
now turn to a detailed synopsis of Newton’s law of gravitation. Poisson’s equation
�˚grav D 4�%, the second order elliptic partial differential equation connecting the
gravitational potential˚grav and the mass density % (the source), is a local statement
of Newton’s action-at-a-distance law of gravitation with its characteristic inverse-
square radial fall-off behaviour and quasi-infinite range:

.Fgrav/12.r/ D �G .m1/g.m2/g

r2
� er : (1.26)

Here, r D jrj, G is the gravitational constant, .m1/g is the passive gravitational
mass, .m2/g the active gravitational mass of the gravitating object (e.g., the Earth,
the Sun, etc.), and er D r=r is the unit vector in the direction of the line joining
the center of the two massive bodies. Newton’s great insight was to put forward the
hypothesis that this force law is not limited to Earth-based systems (such as the fall
of an apple towards the center of the Earth), but applies to all gravitationally acting
massive bodies, and in particular the Solar System.

Newton’s force law has some very distinctive characteristics, some of them
already mentioned in Sect. 1.1, and which reflect certain facts of nature of amazing
simplicity:

• Newton’s gravitational force constitutes a universal force field involving all
bodies in the universe. In principle, gravity cannot be shielded, in contrast to the
way electrical forces can be shielded by a Faraday cage. (Any ‘shielding device’
would only bring in more gravity!) As a consequence of Einstein’sE D mc2 law,
any physical system, which by definition has energy and therefore (gravitational)
mass, participates both actively and passively in gravitation.

• It is a central force, i.e., it acts isotropically in all directions. Such isotropy of a
physical vector quantity is manifestly the simplest possible attribute, and in a way
the most ‘natural’ one between two bodies. Due to its central force character, for
a mechanical system (like the Solar System or the Earth–Moon system) governed
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by Newton’s second law and subject to (1.26), angular momentum is conserved.
(As central forces appear quite often in nature, this conservation law for angular
momentum has a kind of ‘universal’ validity.)

• The fall-off behaviour of the field strength, radial from the center of the active
gravitating mass, has an inverse-square dependence, which results in a long-
range, action-at-a-distance force (i.e., with an instantaneous effect). Compared
to all other forces known in nature (except Coulomb’s law, see below), Newton’s
gravitational force has the weakest possible fall-off behavior, which in turn
implies that it is the force with maximum (mathematically infinite) range of
influence. Furthermore, compared to other fundamental forces, the gravitational
force is very weak, mainly because of the small value of the gravitational
constant G D 6:673 84.80/ � 10�11 m3 kg�1 s�2 (CODATA 2014). (Here, a
rather ‘extreme’ example is provided by the electrical repulsion of two electrons,
which is a factor 1042 stronger than their gravitational attraction!) Ranging from
terrestrial attraction to the evolution of our universe, it is mainly on astrophysical
and cosmological scales that the gravitational force becomes the predominant
force governing nature (and all the more so because the universe is on average
electrical neutral).

• The force is always attractive, due to the minus sign in (1.26), the fact that there
do not exist masses with opposite sign, and the fact that all masses are positive
(whereas there are positive and negative electrical charges, whence there can be
electrical repulsion).

• Equation (1.26) is linear in the massesm1 andm2 and symmetric in the exchange
of the two bodies. According to Newton’s third law, the principle ‘action equals
reaction’ F12 D �F21 (which applies to all known forces), this symmetry
has even more relevance. The linearity of Newton’s law of gravitation in the
masses may be completed by Newton’s fourth law, which states the principle
of linear superposition of mechanical forces. Geometrically, this is achieved by
a parallelogram of forces. This principle is valid also for electrical and other
forces, representing an enormous simplicity of nature with regard to a multitude
of phenomena.

• Mathematically, the gravitational force is an exact vector field, as are in general
all force fields within the class of central forces, i.e., of type

F.r; Pr/ D f .r; Pr/r ;

with the consequence that there exists a single function, namely the (negative)
gravitational potential

˚grav.r/ D �Gm1m2

r
; with Fgrav D �r˚grav :

In essence, Newton’s gravitational force is a mathematically ‘simple’ kind of
force, conceivably even the simplest one. An immediate consequence of the
1=r potential is that, for Newton’s law with force given by (1.26), the so-called
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Runge–Lenz vector A D p � L � m1m
2
2G er is another conserved quantity for

the orbiting particle m2, along with its angular momentum L D r � p.
• The physical concept of a point mass (described mathematically by a distri-

bution) seems to be especially appropriate for the gravitational force, as the
attraction of a spherically symmetric body (e.g., to a good approximation the
Earth and, more importantly, virtually all stars) acts as though the whole mass of
the body were concentrated at its center. This is a direct consequence of the 1=r
behavior of its potential (and is true also for an exponentially decaying Yukawa
potential ˚Yukawa.r/ � �e�r=	=r , as realized, e.g., by certain nuclear forces).
Quite accidentally, due to the identical fall-off behavior of electric forces, the
concept of a ‘point charge’ works equally well. Furthermore, if the body is a
spherically symmetric massive (or charged) shell, no net gravitational (electric)
force is exerted by the shell on any object in its interior (Newton’s shell theorem).

It should be mentioned that the specific 1=r2 law of the gravitational force is the
only one (besides an unphysical force law F � r diverging at large distances) that
would result in closed orbits for the planets in our Solar System, so among other
things, it is one of the crucial features that actually made life possible on Earth!

Newton’s law has striking similarities with a second fundamental force, namely
the force law of electrostatics, Coulomb’s law, describing the force between two
charges e1 and e2 :

Fel.r/ D 1

4�"0

e1e2

r2
er : (1.27)

As for Newton’s law, Coulomb’s static inverse-square law is linear in the charges,
but may also be repulsive, and it obeys Newton’s ‘action equals reaction’ principle
as well. Due to Gauss’ law, Coulomb’s law may also be rewritten as a potential
equation, namely �˚el.r/ D �%c.r/="0, with the electric charge density %c.
Nevertheless, it is well known that gravitation is physically and mathematically very
different from electromagnetism (see, e.g., Ciufolini and Wheeler 1995, Sect. 7.1):
although the two fundamental forces are almost identical in the static case (apart
from a minus sign and some numerical coefficients) their dynamical behavior (in
particular in the relativistic regime) differs as radically as one can imagine.

Over the last two decades, there has been a renewed interest in experimental tests
of the inverse-square law (ISL), especially as regards Newton’s law of gravitation
[a detailed and updated presentation of the different methods used to test ISL, such
as orbital, geophysical, and laboratory observations, and other modern experiments
can be found in Ohanian and Ruffini (2013, Sect. 1.2)]. Historically, such tests of
either Coulomb’s or Newton’s inverse-square law in the form

Fgrav.r/ D �Gm1m2

r2C"
(1.28)

were mainly carried out in order to explain observational violations of the given
theory [e.g., in 1894, Hall found " D 1:6 � 10�7 to fit the ‘anomalous’ perihelion
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advance of Mercury with Newton’s theory of gravity (Hall 1894)]. However, as was
noticed by Adelberger et al. (2003), a parametric ansatz according to (1.28) is rather
inappropriate: “From the perspective of Gauss’s Law, the exponent 2 [in (1.28)] is a
purely geometrical effect of three space dimensions, so this parametrization was not
well-motivated theoretically.” More recently, laboratory measurements of potential
ISL violations with significantly increased sensitivity [for an excellent review, see
Adelberger et al. (2003, 2009) and references therein] try to set bounds on a possible
Yukawa addition to the exact 1=r Newtonian potential, viz.,

˚test.r/ D �Gm1m2

r

�
1C ˛e�r=	� ; (1.29)

where ˛ is a dimensionless strength parameter relative to Newtonian gravity and 	
is a length scale or range related to the mass � D „=	 of the mediating particle in a
relativistic field theoretic approach. (For gravity, this particle is the hypothetical
spin-two graviton, and for electromagnetism the spin-one photon.) Testing any
deviation of the ISL behavior of Newton’s law (or Coulomb’s law) is therefore
equivalent to measuring a (tiny) nonzero value for the rest mass of a graviton (or
photon) (see, e.g., Goldhaber and Nieto 2010).

Here, we only mention orbital observations based on laser- and radar-ranging
data in the Solar System and Earth–Moon system on some characteristic length
scales, and recent laboratory measurements on very small scales (compared to
galactic or even greater cosmological dimensions of the universe, where deviations
from the ISL character of Newton’s law might be expected anyway). Precise
planetary distance measurements by radar ranging to spacecraft orbiting Mercury,
Venus, Mars, and Jupiter set limits on ˛ for 	 between 108 and 1012 m to j˛j < 10�8.
Lunar laser-ranging data restrict ˛ by j˛j < 10�10 for 	 	 108 m. Satellite laser
ranging of the two LAGEOS satellites (see Sect. 4.4) over 13 years set bounds
j˛j < 10�11 for 	 	 6 km, i.e., at approximately one Earth radius (Lucchesi
and Peron 2010). The .˛; 	/ parameter space for laboratory tests ranging from
a few meters down to a few microns are plotted in an updated status review by
Newman et al. (2009). Here, e.g., torsion balance experiments reveal j˛j < 10�2 for
	 > 0:2mm [see also the recent measurements in this regime by Yang et al. (2012)].

After this synopsis of the characteristics of Newton’s law of gravitation and the
observational evidence for it, we come back to its local formulation in terms of
Poisson’s equation and consider the most basic visible objects to appear in our
universe, the multitude of stars. There are several important and astrophysically
relevant open questions. For instance, for which classes of equations of state %.p/ �
0 characterising such equilibrium configurations, and for which parameters such as
the mass M and angular momentum J , do there exist solutions of the equations

�˚ D 4�% ; (1.30)

rp D �%r˚ ; (1.31)
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which describe stars of compact support? And what are the stability limits against
rotational disruption or gravitational collapse? Poisson’s equation complemented
by Euler’s equation actually amounts to solving a nonlinear, singular (at the star’s
surface where % is zero), and free boundary value problem, i.e., a quite involved
mathematical problem.

The mathematical formulation of static and rotating stars within this class of
nonrelativistic equations is quite obvious, and the question of their solutions seems
to be a rather ‘natural’ one, because the ubiquitous existence of stars is evident on
astrophysical grounds (we shall return to the relativistic star problem in Sect. 3.3).
However, a mathematical solution was sought only quite late, and it turned out to
be more intricate than one would expect at first sight. For a long time, only those
stars with (unrealistic) constant mass density and ellipsoidal figure and equipotential
surfaces were treated, and by many famous mathematicians and physicists (Newton,
Jacobi, MacLaurin, Dedekind). [For an overview of the existence of different
types of self-gravitating equilibrium figures of rotating ideal fluid bodies see
Chandrasekhar (1969) for Newtonian theory and Meinel et al. (2008, Sect. 3.3) for
general relativity]. But for high angular velocities, even constant density stars can
have other (even non-convex) figures. Therefore, beyond the first ‘bifurcation point’,
uniqueness of solutions cannot be expected.

For Newtonian theory it was relatively easily proven in Carleman (1918) and
in Lichtenstein (1928) that static ideal fluid bodies are necessarily spherical.
Concerning a general existence proof for rotating ideal fluid stars, only the method
of Auchmuty and Beals (1971) is available. This is based on variational techniques
on very special function spaces, and applies only to a quite reduced class of stars. A
generalization of a standard method of proof (using the Banach fixed point theorem)
from static stars (Schaudt 2000) to rotating stars has not yet succeeded. [In the
degenerate case, rotating dust disks do exist in Newtonian gravity (see, e.g., Binney
and Tremaine 1994, Sect. 5.3), and also in Einsteinian gravity (Neugebauer and
Meinel 1994).] However, it has long been known, and using quite different methods
of proof, that isolated Newtonian rotating dust stars (with pressure p identically
zero) cannot exist (see Bonnor 1977). [Nevertheless, in Schaudt and Pfister (2001),
it was shown by an explicit example that a rotating dust star can be stabilized by
exterior (strained) matter which can be arbitrarily far from the dust region. This
makes it especially clear that the star problem is a genuinely global one.]

In general, the problem of the existence of solutions for rotating stars remains
essentially unsolved in nonrelativistic Newtonian gravity, as it does also in rela-
tivistic Einsteinian gravity, and this even for the ‘simplest’ cases of rotating stars
in complete equilibrium, which rotate in a stationary, axisymmetric, and rigid
manner, and behave like an ideal fluid (see Sect. 3.3). However, for a static and
spherically symmetric fluid star, an existence proof for quite general equations
of state was established in Pfister (2011). If rotating dust stars existed in general
relativity, they would represent examples of a rather improbable perfect balance
between the attractive quasi-Newtonian force (gravitoelectricity) and the repulsive
gravitomagnetism (see Pfister 2010 and Sect. 4.4). For the state of the art regarding
results in Newtonian gravity, see, e.g., Li (1991), and for a recent and fully
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comprehensive overview on rotating stars in Einsteinian gravity, see Friedman and
Stergioulas (2013).

From this negative perspective, or positive depending on one’s point of view,
more than 325 years after the foundations of Newton’s ingenious concepts and laws
in mechanics and gravitation which resulted in his Principia, Newtonian physics is
still a fascinating and open field of activity of physical science.
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Chapter 2
Free Particles and Light Rays as Basic Elements
of General Relativity

2.1 The Seeds Disseminated by Hermann Weyl

In the first half of the twentieth century, the deepest and most innovative analysis
of space and spacetime (after B. Riemann’s ingenious foundation of the concept
of a Riemannian manifold in his famous habilitation treatise Über die Hypothesen,
welche der Geometrie zu Grunde liegen, see, e.g., Jost 2013) was certainly the one
achieved by H. Weyl. He felt challenged by Einstein’s general relativity, which
showed that Riemannian geometry is not just a nice abstract mathematical model
for a metric manifold, but is explicitly realized in physical spacetime. (Weyl also
wrote the first textbook on general relativity, as early as the spring of 1918. For
Weyl’s comprehensive contributions to Einstein’s theory, see, e.g., Ehlers 1985).

One question that was of particular interest to Weyl in this context was the
so-called space problem (Raumproblem), which asks how Riemann’s quadratic
local metric ds2 D gik.x

a/dxidxk is singled out from fourth-order or higher-order
metrics like ds4 D hikjl.x

a/dxidxkdxj dxl (already mentioned by Riemann), or
even more general (Finslerian) metrics ds2 D gik.x

a; dxb/dxidxk . [In Weyl’s own
words (Weyl 1922), this was the question of “the uniqueness of the Pythagorean
determination of a measure”.] A first answer to this question was already given
in Helmholtz (1868): if infinitesimal rigid bodies can be freely rotated around
arbitrary points, the space is Riemannian. But Weyl was not satisfied with this
type of argument and sought in Weyl (1922) “to understand the metric nature of
space from as simple and fundamental reasons as possible”, in particular, using the
linear affine connection (Levi-Civita’s infinitesimal parallel transport) which comes
with any homogeneous metric space, and which then applies to any signature of the
metric. Weyl finally succeeded in proving (Weyl 1922) that only for a Riemannian
metric does such a metric-compatible affine connection exist, and that it is then
unique. However, he denounced his own proof as “mathematical rope-dancing”.
Today, of course, there exist simpler proofs of this fundamental fact about metric
spaces (see, e.g., Laugwitz 1965, Sect. 15).

© Springer International Publishing Switzerland 2015
H. Pfister, M. King, Inertia and Gravitation, Lecture Notes in Physics 897,
DOI 10.1007/978-3-319-15036-9_2

49



50 2 Free Particles and Light Rays as Basic Elements of General Relativity

For our approach to general relativity in this chapter, even more important
is Weyl’s extraction of a projective geometry and a conformal geometry from
a (pseudo-)Riemannian manifold. This is carried out in detail in Weyl (1921).
Projective geometry as such was of course already known and studied long before
by Steiner, Plücker, Hilbert, and others. What is new is the connection with the paths
of free particles, according to Einstein’s equivalence principle. In Weyl’s words:

The inertial tendency of the world direction of a moving material particle, which enforces
upon it a certain ‘natural motion’ if released into some world direction, is this unity of
inertia and gravitation, which Einstein put in the place of both.

Weyl then considers projective transformations (which leave the inertial structure
of the free particle paths invariant, but typically change other metric properties), and
finds that these change the affine connections (Christoffel symbols) according to

•
�

�	 D ı��  	 C ı
�

	 � ;

with arbitrary functions  	.x/. He also defines a projective curvature tensor and
finds that this is nontrivial only in manifolds of dimension d � 3. The conditions
for a manifold to be projectively flat (i.e., all particle paths can globally be chosen
as straight lines) are given explicitly, but they are different for d D 2 and d � 3.

Weyl’s conformal geometry is an essentially new structure which was not con-
sidered before because attention was usually confined to positive-definite metrics
(Weyl 1921):

Characteristic for the conformal structure of a metric space is the infinitesimal cone of
null directions gikdxidxk D 0 belonging to each place. [. . . ] The infinitesimal cone
accomplishes in the neighborhood of a world point the separation of past and future; the
conformal structure is the action connexion of the world which determines which world
points are in a possible causal connection.

Weyl then considers conformal transformations which leave the null cone
invariant but change the affine and therefore the inertial structure according to

•
�

�	 D 1

2
.ı�� '	 C ı

�

	 '� � g�	'
�/ ;

with arbitrary functions '	.x/. He derives the following significant fact for physics
(Weyl 1921): “The projective and conformal structure of a metric space determine
its metric uniquely.” This has the consequence that “solely by observing the ‘natural’
motion of material particles and action propagation, in particular, light propagation,
the world metric can be determined; rulers and clocks are not necessary for that”. It
should be stressed, however, that this is only true if a Riemannian metric structure is
already presupposed. Otherwise the projective and conformal structure do not have
to be compatible, and even if they are, this leads to a Riemannian metric only under
additional conditions, as we shall see in detail in Sect. 2.4.
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The conformal structure leads again to a characteristic curvature tensor which
Weyl had already derived earlier in Weyl (1918a), and which in the notation of
Hawking and Ellis (1973, p. 41) reads:

C��	
 D R��	
 � 1

d � 2.g�	R�
 C g�
R�	 � g�
R�	 � g�	R�
/

C 1

.d � 1/.d � 2/.g�	g�
 � g�
g�	/R ;

where (in dimension d ) R��	
 is the Riemann curvature tensor, R�
 D R
�
��
 is

the Ricci tensor, and R D R
�
� is the curvature scalar. The tensor C��	
 is today

called the Weyl tensor. It completely characterizes the vacuum part of a physical
spacetime, e.g., the exterior of an isolated star or black hole, and gravitational waves.
Conformal transformations have great importance for the global analysis of physical
spacetimes, e.g., in the hands of R. Penrose, for compactifying spacetimes and
defining the asymptotic lightlike manifold Scri (Penrose 1964), where gravitational
waves can be read off (Frauendiener and Friedrich 2002), and for the important
singularity theorems of general relativity (Penrose 1965). There are even proposals
(namely Penrose’s Weyl curvature hypothesis, see Sect. 3.3) to characterize the
beginning of the universe (the big bang) and the irreversible evolution of the
‘thermodynamical world system’ by special properties of the Weyl tensor (Penrose
1979). Another interesting discovery derived in Weyl (1918a) is the fact that the
Weyl tensor is nonzero only in dimensions d � 4, and that there are differences
in the characterization of conformally flat manifolds (where the light cones are
globally straight) for d D 3 and d � 4. (Manifolds with spacetime dimension
below four would not admit sufficiently rich and interesting physical phenomena!)

A further important seed shown by Weyl in 1918 (Weyl 1918a), and in his famous
textbook on general relativity entitled Space, Time, Matter (Weyl 1919, Sects. 17
and 40), which exists in several very different editions, concerns the idea of a gauge
principle. In the original conception, this was based on the hypothesis that vector
transport around a closed loop not only changes the direction of the vector (as is
typically the case in a Riemannian manifold), but also its length. This was then
applied to a geometrization of electrodynamics, and hence to a kind of unification
of electrodynamics with gravity. However, the idea was immediately criticized, in
particular by Einstein, and subsequently lay dormant for a long time. But as is well
known, the gauge principle was restored to life and is now successfully applied in
modern quantum field theory and elementary particle physics. On the other hand,
concerning the present enthusiasm for a possible understanding of the generation
of the masses of the elementary particles by the Higgs mechanism, it may be
appropriate to quote a warning in Weyl (1931): “No good theory will account for
the nature of mass without referring to gravitation.”
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We would like to close this section with another daring quotation from Weyl in
a footnote to Weyl (1918a): “I am bold enough to believe that the totality of the
physical phenomena can be derived from a single universal world law of the highest
mathematical simplicity.” Even 95 years later, this vision has obviously not yet been
fulfilled.

2.2 Light Rays Define the Conformal Structure (Ehlers,
Pirani, Schild)

For their seminal paper entitled The geometry of free fall and light propagation
(Ehlers et al. 1972) the authors (EPS) were undoubtedly stimulated by Weyl’s work,
as presented in the previous section. [Within the more comprehensive context of
classical, non-relativistic and relativistic spacetime models and structures, Ehlers
has given a detailed synopsis of EPS axiomatics in Ehlers (1973b, Sect. 2), and with
some further remarks in Ehlers (1973a, Sect. 4). For a non-technical introduction to
this theme, in a rather descriptive style but physically precise language, see Ehlers
(1988).] However, in a certain sense, they invert the logic in the analysis of the
fundamental structure of physical spacetime (Ehlers et al. 1972, p. 64f):

If, however, one wishes to give a constructive set of axioms for relativistic space-time
geometries, which is to exhibit as clearly as possible the physical reasons for adopting
a particular structure and which indicates alternatives, then the chronometric approach
[e.g., by J. L. Synge in his book Relativity: The Special Theory (1956)] does not seem
to be particularly suitable for the following three reasons. It seems difficult to derive
from the behaviour of clocks alone, without the use of light signals, the Riemannian form
of the separation, ds2 D gijdxidxj ; rather than some other, first-degree homogeneous,
functional form in the dxi (as, for instance, the Newtonian form ds D gidxi ). Postulating
this form axiomatically, one foregoes the possibility of understanding the reason for its
validity. The second difficulty is that if the gij are defined by means of the chronometric
hypothesis, it seems not at all compelling—if we disregard our knowledge of the full
theory and try to construct it from scratch—that these chronometric coefficients should
determine the behaviour of freely falling particles and light rays, too. Thus the geodesic
hypotheses, which are introduced as additional axioms in the chronometric approach,
are hardly intelligible; they fall from heaven [like the equation for ds2 above]. Finally,
once the geodesic hypotheses have been accepted, it is possible, in the theories of both
special and general relativity, to construct clocks by means of freely falling particles and
light rays, as shown by Marzke and, differently, by Kundt and Hoffmann. Thus, these
hypotheses alone already imply a physical interpretation of the metric in terms of time. The
chronometric axiom then appears either as redundant or, if the term ‘clock’ is interpreted
as ‘atomic clock’, as a link between macroscopic gravitation theory and atomic physics: it
claims the equality of gravitational and atomic time. It may be better to test this equality
experimentally or to derive it eventually from a theory that embraces both gravitational and
atomic phenomena, rather than to postulate it as an axiom.

Today, the equality of gravitational and atomic time is confirmed with a precision
reaching 10�15, because for millisecond pulsars the stability of the pulse period
is similar to that achieved by the best terrestrial atomic clocks (Hobbs et al.
2012). (On short timescales atomic clocks even reach a precision of 10�18.)
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Together with the proportionality of these two clock types with ‘clocks’ functioning
on the basis of elastic forces, electromagnetic forces, strong interactions, weak
interactions (radioactive age determination), and possibly other processes, this
represents presumably the most convincing experimental sign that the goal of all
theoretical physicists to unify all physical phenomena of nature in one theory is no
idle dream! In Ehlers et al. (1972), we read:

For these reasons, we reject clocks as basic tools for setting up the space-time geometry and
propose to use light rays and freely falling particles instead. We wish to show how the full
space-time geometry can be synthesized from a few assumptions about light propagation
and free fall.

If the foundations of general relativity are gradually built up in this way from
light rays and free particles, then experimental tests of this theory can immediately
be ordered according to the question as to which parts of general relativity they
really test (e.g., the equivalence principle), and which other parts they leave open
(e.g., the Einstein field equations). Furthermore, such a gradual approach to general
relativity provides a natural way to perform modifications of general relativity by
reducing or extending its metric structure, leading to non-metric theories, gauge
theories, super-theories, etc.

Before one can analyze in detail and in a mathematical language the structures of
light rays and free particles in a physical spacetimeM , one has to fix the topological
structure of M , as do EPS in Ehlers et al. (1972, Sect. 2, pp. 70–72). (See also
typical textbooks on differential topology, like Abraham et al. 1988.) M consists of
all events, i.e., the most elementary and most local acts of physical observation, like
the collision of two ‘pointlike’ particles. Although the totality of really observable
events is of course finite, it has proved reasonable and without contradiction (so
far!) to idealize M as a continuous and differentiable manifold, with the advantage
that the powerful methods of calculus are then applicable. The topological model
of this differentiable manifold which has proved good throughout physics can be
characterized as locally similar to four-dimensional Euclidean space R

4. [Although
this wrongly suggests a locally isotropic four-dimensional space-time, attempts
to incorporate the light cone structure into the topology in the case of the so-
called Zeeman topologies (Zeeman 1967) have not really prevailed in mathematical
physics.]

The manifold M is therefore assumed to be completely covered by (finitely or
infinitely many) submanifolds U˛ , each of which can be mapped by a uniquely
invertible chart ˚˛ to an open submanifold of R

4, where in the common region
U˛ \ Uˇ , the charts ˚˛ and ˚ˇ are connected by a diffeomorphism (C3 is usually
sufficient). The manifold {U˛; ˚˛} is then called an atlas or a coordinatization of
M . A concrete realization of such a coordinatization can be given by so-called radar
coordinates: two observers who move on arbitrary (not necessarily free) pathsP;P 0
(one-dimensional submanifolds of M ) and carry arbitrary (but monotonic) clocks
�; � 0; exchange radar or light signals. Then, according to Fig. 2.1, the events e in an
appropriate neighborhood of parts of P;P 0 are characterized by the four numbers
�1; �2; �3; �4 (called radar coordinates) in a uniquely invertible manner.
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Fig. 2.1 The definition of
radar coordinates
.�1; �2; �3; �4/ on the basis of
paths P and P 0 with clocks �
and � 0

Since there exist also quite strange and unphysical manifolds with locally
Euclidean topology, one confines attention to paracompact and Hausdorff manifolds
(see Abraham et al. 1988 for details). An important consequence of this is that there
then exists a decomposition of unity in M which enables one to carry out integration
on M .

Manifolds M of this type automatically carry a vector and tensor structure,
where the contravariant vectors u at an event e 2 M are defined as the tangent
vectors to differentiable curves through e. The dual space of linear functions

.u/ � h
;ui represents the covariant vectors or 1-forms. It is, however, important
to stress that up to now these vector spaces are purely local, and the vector spaces at
different events e1 and e2 are unrelated to each other. Tensors of type .r; s/ in e are
defined in the usual way as multilinear functions of s contravariant and r covariant
vectors. Further important quantities, which automatically live in such a differential
topological manifold, are the differential df , the exterior derivative, and the Lie
derivative:

• df is a 1-form associated with any differentiable function f on M : hdf ;ui is
the derivative of f at e along a curve with tangent vector u.

• The exterior derivative is a generalization of the differential to so-called q-forms
A which are antisymmetric tensors of type .0; q/. In coordinates, and with the
symbol ^ for the antisymmetric product:

A D AŒ�1:::�q � ^ dx�1 ^ : : : ^ dx�q ; dA D dAŒ�1:::�q � ^ dx�1 ^ : : : ^ dx�q ;

where the construction is, due to the antisymmetrization, coordinate independent.
Applying the exterior derivative two times always gives zero, viz., d.dA/ �
0, because the second derivatives of a two times continuously differentiable
function are independent of the order. Geometrically, the relation d.dA/ � 0
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expresses the fact that the boundary of a manifold possesses no boundary. (We
come back to this fact in connection with Einstein’s field equations in Sect. 3.2.)
The q-forms also provide a generalization of the Gauss and Stokes theorems in
the form

R
@G A D R

G dA for any (qC 1)-dimensional submanifold G of M with
boundary @G .

• The Lie derivative is based on the fundamental theorem of the theory of
differential equations according to which any continuously differentiable vector
field u.p/ on M induces a congruence of integration curves pi .	/, which in turn
induce a one-parameter group of diffeomorphisms ˚	. These diffeomorphisms
˚	 also transport all vectors and tensors from an event p to the image point
˚	.p/ D q, and the Lie derivative of a tensor field T.p/ is defined by

LuT D lim
	!0

1

	

˚
T.q/ � T.p ! q/

�
:

For scalar fields the Lie derivative is obviously the same as the standard
derivative. Of special interest is the Lie derivative of a vector field, viz., Luv D
Œu; v�, which is identical with the commutator of two vector fields, and the vector
fields with this composition form a Lie algebra with Jacobi identity.

For more details about these interesting quantities and operations in a topological
manifold, see Abraham et al. (1988). It should be stressed, however, that these
structures do not yet allow the formulation of physical field equations (differential
equations) because the latter rest on the concept of partial derivatives of general
fields at a point (event), whereas the exterior derivative is only defined for q-forms,
and the Lie derivative also depends on derivatives at neighboring points. For the
formulation of field equations, we therefore need additional structure on M , at least
an affine structure, something which results in a physically natural way from the
conformal light cone structure (see below) and the projective inertial structure (see
Sect. 2.3).

The phenomenon of light propagation in vacuum—with its independence of
frequency, polarization, intensity, and velocity of source and receiver—endows the
differential-topological manifold M with a new, characteristic structure: events in
M are locally classified by the property of whether they can or cannot be connected
by direct light signals. A systematic, operational, and fairly complete analysis of this
structure (solely by coordinate-independent topological and incidence properties,
and without further underlying structures such as a metric) was first presented in the
seminal paper (Ehlers et al. 1972), which uses earlier partial results by R. Sachs,
F.A.E. Pirani, A. Schild, A. Trautman, and R. Penrose, some of which are quoted in
Ehlers et al. (1972). [An alternative, somewhat earlier, but less complete attempt to
build up (pseudo-)Riemannian spacetime from hypotheses about the paths of light
rays and free particles was provided in Castagnino (1971).]

According to experience the conformal structure obeys the following axioms:

Axiom L0 Light rays are smooth C3-submanifolds of M , diffeomorphic to R
1.
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Fig. 2.2 The definition of the
function g.p/ D �.e1/�.e2/

in neighborhoods U � V of
the event e, and relative to a
path P with clock �

However, more than for particle paths, this axiom implies a gross extrapolation of
real experimental facts because, due to the infinite time dilatation, a light ray cannot
carry with it any instrument continuously measuring a path parameter. Strictly
speaking, only the acts of emission and absorption of a photon can be registered.

Axiom L1 For any event e 2 M and any (not necessarily free) particle P through
e, there exist neighborhoods V and U � V of e such that any event p 2 U , not
lying on P , has precisely two light connections L1;L2 with P , lying completely
in V , and these meet P in distinct events e1; e2 (see Fig. 2.2). For an appropriate
monotone parameter � on P \V with �.e/ D 0, the function g.p/ D �.e1/�.e2/ is
at least two times continuously differentiable in U .
The two light connections represent the decisive contrast with Newtonian space-
time where the concept of absolute time forms the substitute for the whole
conformal structure (compare Sect. 1.5). It should also be stressed here that, in
strong gravitational fields, Axiom L1 is no longer valid globally: effects like the light
deflection by big masses can lead to more than two light connections between p and
P , and so-called horizons can have the effect that only one light connection exists,
or none at all. Axioms L1 and L2 already contain a part of Einstein’s equivalence
principle, so essential to general relativity: in gravitational fields, light has locally
the same behavior as in special relativity.
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Axiom L2 At an arbitrary event p, the manifold of vectors Lp in the direction
of light rays separates the residual manifold Dp=Lp of direction vectors into two
connected components, the timelike and spacelike vectors. The manifold of nonzero
vectors in p, adjacent to light rays, consists of two connected components, the
forward and backward light cones.
This does not yet imply any intrinsic difference between future and past. However,
due to the continuity of the light cone structure, it implies a local time orientation.

Some important and characteristic properties of the above function g.p/, which
are independent of the specific particle path P and of the specific parameter � ,
follow from the Axioms L1 and L2:

• g.p/ D 0 for p 2 U holds if and only if p lies on a light ray through e.
• In relation to an arbitrary coordinate system hx�i in the neighborhood of e, we

have @g.p/=@x�je � g;�.e/ D 0, for � D 0; : : : ; 3. If this were not the case, the
equation g.p/ D 0 would describe a smooth hyperplane with normal vector
g;�.e/, containing locally all light rays through e, and this would contradict
Axiom L2.

• For a general function f .p/, the second derivatives f;��.e/ do not constitute a
tensor with correct transformation properties for general (non-linear) coordinate
transformations. However, due to property (2), the derivatives g;��.e/ constitute
a tensor.

• On a light ray through e, we have g.x�.
// � 0. Differentiating this equation
twice with respect to 
 leads to

g��k
�k� D 0 ; (2.1)

with g�� D g;��.e/, where k� D dx�=d
 is an arbitrary lightlike vector at e.
In principle, (2.1) can be used to calculate (up to a factor) the tensor g�� for a
given coordinate system hx�i and a given parametrization � , i.e., by solving it
for nine light rays with linearly independent products k�k� . If further light rays
also solve (2.1), this constitutes a test of Axiom L2.

• By linear coordinate transformations, the symmetric matrix g�� can be diag-
onalized, with diagonal elements g�� D 1;�1; or 0. But only the signature
(1;�1;�1;�1) and its negative satisfy Axiom L2. (In all other cases the
nonzero lightlike vectors at e form only one connected component, or the non-
lightlike vectors form only one connected component, contradicting Axiom
L2.) Therefore, in appropriate coordinates, g�� can be set locally in the form
g��.e/ D ��� , known from special relativity.

Now, the tensor g�� can be used to define a scalar product (uniquely up to a positive
factor) for vectors u and v at e :

g.u; v/ D g��u�v� ;
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and this product is invariant under all coordinate transformations. Two vectors u
and v are orthogonal if g.u; v/ D 0. Vectors u are timelike if g.u;u/ > 0, spacelike
if g.u;u/ < 0, and lightlike if g.u;u/ D 0. If two spacelike vectors u and v are
orthogonal to one and the same timelike vector, their normed scalar product

�.u; v/ D g.u; v/p
g.u;u/g.v; v/

;

ranges between �1 and C1, and can be interpreted as the cosine of the angle
between u and v. For two timelike vectors, we have j�.u; v/j � 1, and the quantityp
1 � ��2 denotes the momentary relative velocity (in units of the light velocity c)

of two particles with tangent vectors u and v at e.
Although the vectors u; v; : : : are, to begin with, only defined locally at the event

e, the conformal structure is not confined to the local characterization of light cones
at events e; p; q; : : :. In fact, it also provides laws for the connection of light cones
at neighboring events, and in this way leads to a differential equation for light rays.
Indeed, one can show not only that g��.e/ can be transformed to the normal form
��� , but that, by a coordinate transformation

x� D x0� � 1

2
K
�

�	.e/x
0�x0	 ;

with

K
�

�	.e/ D 1

2
g��.e/

h
g��;	.e/C g�	;�.e/ � g�	;�.e/

i
; (2.2)

the condition g0
��;	.e/ D 0 can also be arranged for all 	;�; �, where g�� is

the dual tensor to g�� , defined by g��g�	 D ı
�

	 . (The property g0
��;	 D 0 can

even be achieved along a finite curve through e. It is important to stress that the
functions g��;	 cannot in general be understood as the third derivatives of the
function g.p/ because g��.e/ and g��.p/ are defined differently at neighboring
points.) Geometrically, the property g0

��;	.e/ D 0 expresses the fact that the light
cones �p at neighboring events p have the same orientation and the same opening
angles as �e , i.e., if p lies on �e , the light cone �p touches �e from the interior, as
shown in Fig. 2.3. (Otherwise the point p would have three light connections with a
particle P through e, contradicting Axiom L1.)

The light ray from e to p obviously lies locally on both light cones and is
therefore their unique contact line. In the coordinates hx0�i, this line is straight
(and not a screw line!), and with an appropriate parameter � , it is represented
by d2x0�=d�2 D 0. Transforming back to the coordinates hx�i and to a general
parameter 
 leads to the general equation for a conformal null geodesic, viz.,

dk�

ds
CK

�

�	k
�k	 D C k� ; (2.3)
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Fig. 2.3 If the point p lies on
the light cone �e , the light
cone �p touches �e from the
interior

with C D �.d2s=d�2/=.ds=d�/. The quantities K�

�	 are called the conformal
connections.

Although the coefficients K�

�	 do not constitute a tensor, they can be used to
define a covariant differentiation of vector and tensor fields: whereas the derivatives
@S�=@x� of a vector field behave as tensor components only for linear coordinate
transformations, the quantities

Qr�S
� D @S�

@x�
CK�

�	S
	

do this for general transformations. A coordinate-independent vector transport (a
kind of parallel transport) can then be defined along a curve x�.�/ with tangent
vector T � D dx�=d� , viz.,

QDS�
D�

D T �
�
@S�

@x�
CK�

�	S
	

�
D 0 : (2.4)

However, this transport is not conformally invariant. A gauge transformation

g��.x
	/ ! ˝2.x	/g��.x

	/

results in

K
�

�	 �! K
�

�	 D K
�

�	 C 1

2˝2

�
ı�� ˝

2
;	 C ı

�

	˝
2
;� � g�	˝

2;�
�
; (2.5)
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whereby just the trace terms of K�

�	 change. [In a given coordinate system, the
coefficientsK�

�	.e/ can all be made zero by an appropriate gauge transformation.]
Even though the conformal structure alone does not provide unique directional

derivatives of vectors and tensors, and therefore no covariant differential equations,
it already allows the introduction of mathematical concepts that are central to the full
theory of general relativity. For instance, a covariant and gauge-invariant transport
can be defined for surface elements containing the tangent vector T � (of unit
length), or for vector fields S�.�/ orthogonal to T �, and therefore for orthogonal
vierbeins accompanying an arbitrary non-lightlike curve, the so-called rotation-free
or Fermi transport (Fermi 1922):

dS�

d�
D �K�

�	T
�S	 C

�
S�

DT �

D�

�
T � : (2.6)

According to Synge (1966, Sect. III.8), the Fermi transport along timelike curves
can be visualized by a nice thought experiment with so-called bouncing photons.
An observer carries along his path x�.�/ a telescope-like instrument, with which he
can emit and receive light rays. If he adjusts the direction S� (orthogonal to T �) of
the instrument in such a way that light reflected on nearby objects is always exactly
focused back into the telescope, the instrument is Fermi transported. [A simple proof
of this fact was given in Pirani (1965).]

As we have seen, the Axioms L1 and L2 imply that the light cone structure
g��.x/ is locally identical with the light cone structure of Minkowski spacetime
in a neighbourhood of first order, i.e., for all derivatives g��;	.e/. However, this
should not be expected to continue to, e.g., the second derivatives g��;	�.e/. Rather,
these quantities will signify some characteristic and invariant physical properties
of the global light cone structure, and of the manifold M itself, which may, for
instance, be caused by strong gravitational fields. There are at least three ways
to construct some light-geometric quantities from the non-tensorial derivatives
g��;	�.e/. Purely mathematically, one can try to construct a gauge-invariant tensor
from these derivatives. More geometrically, one can ask whether the above Fermi
transport induces a holonomy group, i.e., a non-trivial map of vectors due to
transport around a closed curve. Here, we shall follow a third route, namely the
possible change in shape of a thin bunch of parallel light rays.

The ‘central’ ray x�.�/ obeys (in distinguished parametrization) the null
geodesic equation

d2x�

d�2
CK

�

�	

dx�

d�

dx	

d�
D 0 :

The neighboring light rays x�.�/C •x�.�/ obey equivalent equations. Subtracting
the two equations, linearization in the small quantities •x�.�/, and ‘covariantiza-
tion’ leads to

QD
D�
•x� D d

d�
•x� CK

�

�	k
�•x	 : (2.7)
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Covariant differentiation of this equation results together with the geodesic equation
and the equation for d2.•x�/=d�2 in the equation of geodesic deviation:

QD2

D�2
•x� D R

�

�	�k
�k�•x	 ; (2.8)

with

R
�

�	� D K
�

��;	 �K
�

�	;� CK
�

	�K
�
�� �K�

��K
�

�	 :

Since, according to (2.8), R��	� maps the vector triple k�; k� ; •x	 to the vector
QD2.•x�/=D�2, it is to be expected, according to the quotient theorem, that R��	�
will be a type (1; 3) tensor, and this is indeed the case.

It is easily checked that the tensor R��	� D g��R
�

�	� has many interesting
symmetries, most of which also have a geometrical meaning. Antisymmetry in the
first two indices and in the last two indices, and cyclic permutation symmetry

R��	� CR�	�� CR���	 D 0 ;

from which follows also the pair symmetry R��	� D R	��� . These reduce the
originally 44 D 256 independent components to only 20. (This also follows from the
following argument. There are 100 independent quantities g��;	� . In order that there
should appear no third derivatives @3x0�=@x�@x	@x� in coordinate transformations
of the sought-for tensor, there must be 80 constraints.)

Since the vector transport of (2.7) is only covariant but not gauge invariant, the
tensorR��	� will not be gauge invariant either. However, since we are dealing with a
tensor, it is relatively easy to extract a gauge invariant tensor from it, in contrast to
the non-tensorial quantities K�

�	. Equation (2.5) shows that gauge transformations
change the trace terms of K�

�	, and therefore also those of R��	� . So we just have
to subtract the traces of R��	� , and this under preservation of the symmetries. Due
to these symmetries, the tensor R��	� has only one independent simple trace R�� D
R
�
��� , and one double trace R D g��R�� . Subtraction of these traces leads uniquely

to the Weyl tensor or conformal curvature tensor

C
�

�	� D R
�

�	� � 1

2

�
ı
�

	R�� � ı�� R�	 � g�	R�� C g��R
�

	

� C 1

6

�
ı
�

	 g�� � ı�� g�	
�
R ;

(2.9)

which H. Weyl derived in Weyl (1918a), as mentioned in Sect. 2.1. [For a geometric
construction of Weyl’s conformal curvature tensor via light rays, see Pirani and
Schild (1966)]. Due to its trace-freeness, the Weyl tensor has only ten independent
components.
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Coming back to the change in shape of a parallel light bundle from which we
started, we use a basis .e0; e1; e2; e3/, where e0 D k, while e1 is the timelike vector
tangent to the path u�.�/ of an observer measuring the cross-section of the light
bundle, and e2 and e3 are orthogonal to each other and orthogonal to e0 and e1.
Then according to (2.8), the change in shape is determined solely by S�� D C

�
0�0

with �; � D 2; 3. The tensor S�� is trace-free (an expansion of the shape is not
definable in a conformally invariant manner!), and due to the pair symmetry of the
Weyl tensor, S�� is symmetric (no rotation or vorticity is definable in a conformally
invariant manner!), i.e., it has the form

S�� D
�
a b

b �a
�
;

with eigenvalues 	1;2 D ˙p
a2 C b2. Therefore, a light bundle starting with

spherical shape typically attains an elliptic shape. In relation to an observer
with four-velocity u�, the Weyl tensor separates into an ‘electric part’ E�� D
C��	�u	u� and a ‘magnetic part’ H�� D "�	�
C

�

�� u	u�=2, where "�	�
 is the

totally antisymmetric tensor with "0123 D p�det.g��/. In Newtonian gravity (with
potential˚), the equivalent toE�� is the 3-tensor˚;ij ��ij˚;

k
k =3, and the equivalent

to H�� is identically zero.
As already mentioned in Sect. 2.1, the Weyl tensor completely determines the

gravitational field in all vacuum parts of a physical system, and is particularly
important for the study of gravitational waves. Whereas the spacetime variation of
C
�

�	�.x
˛/ is quite versatile and indirectly (non-linearly and non-locally) determined

by the matter parts of the physical system, there exists a quite simple and coordinate-
independent classification of the local structure of C�

�	�.x
˛/, the so-called Petrov

classification. It is based on the eigenvalue equation

.C��	� � 	g��	�/F
	� D 0 ;

where the ‘unity tensor’ has the form g��	� D g�	g�� � g��g�	, thanks to the
symmetry properties. Due the antisymmetry of C��	� in the first two and in the last
two indices, this eigenvalue equation is best studied on the six-dimensional space of
antisymmetric bivectors

F Œ	�� D FA ; with A D
�
1 2 3 4 5 6

.01/ .02/ .03/ .23/ .31/ .12/

�
;

where it takes the form

.CAB � 	gAB/F
A D 0 ; (2.10)
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and in the local inertial system (g�� D ���/ the tensor CAB has the form

�
M N

N �M
�
;

with symmetrical and trace-free 3 � 3 matricesM and N , and with

gAB D
��1 0

0 C1
�
:

We then have, for the eigenvalues 	, two complex conjugated equations of degree
three with solutions 	1=4 D ˛1˙iˇ1, 	2=5 D ˛2˙iˇ2, 	3=6 D �	1=4�	2=5. The most
general Petrov type I is realized for 	1 6D 	2 6D 	3 6D 	1. The case 	1 6D 	2 D 	3
is Petrov type II. A special subcase of type II (with simpler normal forms of the
matricesM;N ) is called type D. The Schwarzschild and Kerr solutions even belong
globally to this type. The case 	1 D 	2 D 	3 D 0 is Petrov type III, with a special
subcase of type N. [For more details about this Petrov classification, see Stephani
et al. (2003, Chap. 4). There one also finds a characterization of the different
Petrov types by the so-called principal null directions. A nice characterization of
the different Petrov types by Gedanken experiments with a so-called gravitational
compass was provided in Szekeres (1965).] An especially useful application of the
Petrov classification shows up in the peeling theorem of R. Sachs in Sachs (1961),
concerning the asymptotic (r ! 1) behavior of a vacuum gravitational field far
from any material sources. In an expansion in powers of r�1, the Weyl tensor then
has the symbolic form

C��	� D N

r
C III

r2
C II

r3
C I

r4
: (2.11)

We have already mentioned that the Kerr metric is of Petrov type D. Indeed, this
important solution of Einstein’s vacuum field equations was found by R. Kerr
in Kerr (1963), not so much as a realization of a physical target, but by lucky
circumstances in a mathematical study of Petrov type D solutions. And whereas
it was originally interpreted as the exterior solution of a real astrophysical spinning
mass (with the aim of finding a corresponding interior solution), it was only proven
much later that this solution applies uniquely to all rotating black holes (Heusler
1996). (Some authors still argue incorrectly that the Kerr metric also represents the
exterior of real, non-collapsed rotating astrophysical bodies.) As far as we know,
there is still no simple and mainly physically motivated derivation of the Kerr
metric. However, there does exist a derivation via the solution of a boundary value
problem (at the horizon) using the (mathematically involved) inverse scattering
method (Meinel 2013).
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2.3 Free Particles Define the Projective Structure (Desargues
Theorem)

As already mentioned in the previous section, the conformal structure of spacetime
alone does not yet suffice to formulate differential equations for physical fields.
(Moreover, the conformal or scale invariance of the light structure cannot extend to
all other physical laws and effects in the material world, e.g., a 100 times bigger
Eiffel tower on a 100 times bigger Earth would surely collapse.) If we look at other
elementary and universal one-dimensional paths in the physical spacetime manifold
M , by analogy with the light rays of Sect. 2.2, the only distinguished class of such
objects are the so-called free particles, as defined in Sect. 1.3. And indeed, these
objects do seem to endow spacetime with a further fundamental structure, namely a
unique inertial or projective structure, because modern experiments have confirmed
the universality of free fall (part of Einstein’s equivalence principle) to an accuracy
of 1:8�10�13 (Schlamminger et al. 2008), while an improvement up to 10�18 seems
possible with planned satellite experiments [see Sect. 1.5 and the papers 184001–
184013 in the Focus issue Tests of the weak equivalence principle in Class. Quant.
Grav. 29/18 (September 2012)]. This suggests, in agreement with Ehlers, Pirani,
Schild (EPS), the following axiom.

Axiom P1 For any event e 2 M , and for any timelike direction (with respect to the
conformal structure) at e, there exists one and only one free particle path P through
e with this direction.
As Ehlers noted in Ehlers (1985, p. 87):

The projective structure represents that unit of inertia and gravity which Einstein substituted
for both, and for which Weyl introduced the suggestive term guiding field (Führungfeld).

In a next step, we have to characterize by geometric and/or mathematical
means the distinguished inertial structure which these free particle paths inscribe
within the manifold M . By analogy with the conformal structure, as is evident in
particular from Axiom L1, it is to be expected that in general (e.g., in general and
strong gravitational fields) such a characterization can only be given locally in a
neighborhood of the event e. EPS do this in their Axiom P2 only in a coordinate-
dependent way and not by ‘qualitative (incidence and differential–topological)
properties’ as they announce in their introduction. One can criticize this approach
in the same way as Einstein (as already quoted in Sect. 1.4): “Who does not feel the
painfulness of such a formulation?” In somewhat later publications of Pirani (1973)
and Ehlers and Schild (1973), there were more geometrical characterizations of the
structure of free-fall paths (e.g., a reconstruction of the projective curvature tensor
from particle paths) by so-called tongs and comb constructions, or by a zig-zag
construction. And still later, there appeared characterizations in Ehlers and Köhler
(1977) and Coleman and Korte (1980) in terms of a maximal local isotropy or
dilatation symmetry.

However, we would like here to advocate a simpler and more elementary char-
acterization of this structure, using only incidence properties between the free-fall
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paths. In Sect. 1.4, we succeeded in providing such an alternative characterization
of the free particle paths (the straight lines in the arena of flat spacetime of classical
mechanics and special relativity) by exploiting the geometric incidence figure of
Desargues (see Fig. 1.2 in Sect. 1.4), and with the help of a proof by Hilbert. This
raises the question as to whether this recipe can be extended to the curved manifold
of general relativity via a ‘localization of the Desargues theorem’, and of course
without the parallel axiom used by Hilbert in his proof. In Heilig and Pfister (1990),
it was shown that this is indeed possible.

Axiom P2 A path structure is a free fall (or inertial) structure if and only if, for
any point e of the manifold M , an "-neighbourhood can be found such that the path
structure obeys there the Desargues incidence properties up to order "2.
In the following paragraph and in Appendix A, we summarize the main steps of the
proof given in Heilig and Pfister (1990) that this Axiom P2 is indeed equivalent to
the coordinate-dependent Axiom P2 of EPS.

The ‘only if’ part of Axiom P2, i.e., that the free-fall paths fulfil the Desargues
properties up to order "2, is almost trivially evident. In the local inertial system, all
free-fall paths in the "-neighbourhood of e have the representation

x�.�/ D x�.e/C �v�.e/CO."3/ ;

with v�.e/ D dx�=d�.e/, and where the parameter � is of order ". That these
straight lines (up to errors of order "3) fulfil the Desargues properties, is a standard
result of projective geometry, as explicated in Sect. 1.4.

In contrast, the proof of the converse, that a manifold of paths locally satisfying
the Desargues properties is necessarily a free-fall path structure (consisting of
projective geodesics), is quite involved. Here we only give a qualitative indication of
the strategy leading to this result. We begin with the special case shown in Fig. 1.2
of Sect. 1.4, where the directions of the paths P;P 0; P 00 at e are linearly dependent.
The existence of the intersection points e1; e2; e3 to order "2, due to the local
Desargues theorem, guarantees that in this case the whole Desargues configuration
can be reduced to a two-dimensional submanifold. [A detailed proof is to be found in
Heilig and Pfister (1990, Sect. 2.2).] This is the so-called surface-forming property
of the projective geodesics that also played a major role in Pirani (1973) and Ehlers
and Schild (1973).

As usual in projective geometry, the situation in two dimensions is special, and
the most difficult to prove. From the Desargues properties there follows an involved
functional equation for the central ‘acceleration function’ K.v/ of the path structure,
defined by the local expansion of the particle path

x.�/ D x.0/C �v.0/C �2a.x; v/CO."3/ 	 x.0/C �v.0/C �2a.0; v/CO."3/ ;

with a.0; v/ DW K.v/, and it can be shown that the only admissible solutions of
this functional equation are such that K.v/ depends linearly and symmetrically
bilinearly on the components of the two-dimensional direction vector v. How-
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ever, such dependencies can be eliminated by suitable coordinate and parameter
transformations, i.e., K.v/ can be made identically zero. The generalization to
higher-dimensional cases consists then in a simple and more or less formal
extension of the two-dimensional results. Some details of the (technically quite
involved) proof for the elimination of the acceleration function K.v/ are deferred
to Appendix A. Even more details can of course be found in Heilig and Pfister
(1990).

According to Axioms P1 and P2, and due to the proof that the local Desargues
property is equivalent to the coordinate-dependent EPS characterization of free-fall
paths, these have in the local inertial system the representation d2x�=d�2.e/ D 0.
In a different arbitrary coordinate system hx0�.x�/i and with a new parameter 
.�/,
they have the form

d2x0�

d
2
C˘

�

�	.x
0˛/

dx0�

d


dx0	

d

D k.
/

dx0�

d

; (2.12)

with the factor k.
/ D .d
=d�/.d2�=d
2/, and with the symmetrical projective
connections

˘
�

�	.x
0˛/ D � @2x0�

@x�@x

@x�

@x0�
@x


@x0	 : (2.13)

Paths of the form (2.12) are called projective geodesics, and this in all cases, whether
their tangent vectors dx0�=d
 are timelike, lightlike, or spacelike. In analogy
with the conformal structure in Sect. 2.2, the projective structure induces in M a
directional derivative, the so-called covariant derivative for arbitrary tensor fields:

T
�1:::�r
�1:::�sI	 D @

@x	
T �1:::�r�1:::�s

C
rX

nD1
˘
�n
	� T

�1:::�:::�r
�1:::�s

�
sX

mD1
˘
�

	�m
T �1:::�r�1:::�:::�s

; (2.14)

and this operation is independent of the chosen coordinate system. The exterior
and Lie derivatives introduced in Sect. 2.2 are identical with the following covariant
derivatives:

dA D A�1:::�q I	dx	 ^ dx�1 ^ : : : ^ dx�q ;

and

.LXY/� D Y �I�X� � X�I�Y � :

The covariant derivative induces Levi-Civita parallel transport (Levi-Civita 1917)
along a curve x�.�/, e.g., for a contravariant vector Y � :

DY �

D�
D dY �

d�
C˘

�

�	Y
� dx	

d�
D 0 : (2.15)
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A free particle path or projective geodesic is then an auto-parallel. However, the
above parallel transport is not invariant under parameter transformations (projective
transformations) of the curve x�.�/. Rather, in transformations � ! 
 , the
projective connections transform to

˘
0�
�	 D ˘

�

�	 C .ı�� q	 C ı
�

	 q�/ ; with q	
dx	

d

D �1

2
k.
/ :

Therefore, this transport is not really a transport of direction vectors but, similarly
to the Fermi transport in Sect. 2.2, a transport of bivectors or surface elements.
And once again, for timelike curves x�.�/, this transport can be visualized by the
emission and reflection of free particles in the neighborhood of the observer path
x�.�/, where, due to the surface-forming property of the family of geodesics, this
construction is independent of the velocity of the emitted particles (see Pirani 1973;
Ehlers and Schild 1973).

By analogy with the Fermi transport, one can ask whether this parallel transport
induces a characteristic map S ! W of a vector S after its parallel transport around
an infinitesimal closed ‘parallelogram’ built up by vectors T and U. Indeed, up to
parametrization-dependent terms proportional to S;T;U, we get

W � D Q�
��
S

�T �U 
 D T �U 

�
S�I
� � S�I�


�
; (2.16)

with

Q�
��
 D ˘�

�
;� �˘�
��;
 C˘

�

�	˘
	
�
 �˘

�


	˘
	
�� :

[Compare with the expression forR��	� in the formula after (2.8) of Sect. 2.2.] Again
this tensor has characteristic symmetry properties, although fewer symmetries than
the tensor R��	� . And since it is a tensor, we can get rid of the parameter-dependent
parts by subtracting the traces Q�� D Q	

�	� , resulting in the projective curvature
tensor

P�
��
 D Q�

��
 � 1

5
ı�� .Q�
 �Q
�/� 1

15
ı�� .4Q�
 CQ
�/C 1

15
ı�
 .4Q�� CQ��/ ;

(2.17)

which was also derived by Weyl (1921). In principle, a classification of this
tensor (by analogy with the Petrov classification of the Weyl tensor) would be
possible. However, due to its 64 independent components (in four dimensions), this
would be much more involved, and it has not yet found any physically convincing
interpretation. A manifold with P�

��
 � 0 is said to be projectively flat. Due to the
surface-forming property, a two-dimensional manifold is always projectively flat.
In complete analogy with the significance of the Weyl tensor for the conformal
structure, the tensor P�

��
 contains all non-trivial information (going beyond special
relativity) about the projective structure of M .
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The formulation of Newton’s first law in Sect. 1.4 (in the absence of gravity) is
of course no longer true in general gravitational fields, and in general there are no
objects whatsoever which move globally on straight lines, because gravity cannot
be shielded. (Any ‘shielding device’ would only bring in more gravity!) Thus, the
term ‘inertial system’ for a system of straight axes in classical mechanics is (in the
presence of gravity) somewhat misleading. Of course, one can in principle formulate
any field of physics in any (global and unique) coordinate system one likes. That
systems based on straight lines have nevertheless been successful (and even optimal)
in Newton’s Principia and in the modern teaching of mechanics and other fields of
physics is due to ‘lucky circumstances’ in our Earth-based laboratories, and also in
most (but not all!) other places in our universe, conditions which are usually kept
secret in textbooks: the gravitational field on Earth, although not really weak (in
comparison to other forces), is extremely homogeneous on any laboratory scale.
Therefore, this ‘gravitational force’ can be nearly transformed away, e.g., by going
to the famous Einstein elevator. The effects of Einstein’s curvature of spacetime are
by factors 10�9 smaller than the Newtonian gravitational force in any Earth-based
laboratory or Earth satellite. [As the nice example with the tracks of balls and bullets
in Misner et al. (1973, Box 1.6) shows, it is really the curvature of spacetime, and
not of space!]

One may speculate that physics as we know it would never have been developed
if the equivalence principle had been severely violated in nature, or if spacetime
on our human scale had been grossly curved. In typical presentations of the laws
of classical mechanics, gravity is treated like any other force field, in the arena
of (hypothetical) global inertial systems. However, it was the great insight of
Einstein, in his equivalence principle, that gravity is a very special ‘force’, and that
gravity is intimately connected with inertia. According to Einstein’s proposal, it is
therefore advisable to use this unique structure provided by the paths of free particles
under the common (and partly indistinguishable) action of inertia and gravity to
build a new physical geometry of (pseudo-)Riemannian type. Then (2.12), with
the projective coefficients ˘�

�	.x
0˛/ replaced by the (metric) Christoffel symbols


�

�	.x
0˛/, established in the next section, continues to describe the global paths of

free particles (geodesics) in arbitrary gravitational fields. And since all coefficients

�

�	.x
0˛/ can simultaneously be made zero at a given event, one recovers a local

version of Newton’s first law in arbitrary gravitational fields:

Newton’s First Law In an "-neighborhood around a given event, and in an
appropriate class of coordinate systems, free particles (in the presence of gravity)
move on straight lines up to errors of order "3.
That these particles do not follow straight lines globally (and, in consequence, that
free particles that emanate from a common event can be focused) is a result of ‘real
gravitational fields’. And these are mathematically encoded in the curvature of the
(pseudo-)Riemannian spacetime, i.e., in the derivatives of the Christoffel symbols,
which are, for their part, fixed (through Einstein’s field equations) by the matter
content in this region of spacetime (see Sect. 2.4). If one is unhappy with the above
coordinate-dependent formulation of the local Newton law, it is very reassuring
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that a local version of the coordinate-independent characterization of straight lines
through the Desargues property also exists, through Axiom P2.

2.4 Weyl Structure, Affine Structure, and Metric Structure

So far the conformal structure (as established in Sect. 2.2) and the projective
structure (in Sect. 2.3) have been introduced quite independently of each other.
However, it turned out that the mathematical characteristics (connections, geodesics,
vector transports, curvatures) of these structures were quite similar. Furthermore,
physically, it is well known that the light velocity can be seen as the limit of
the velocities of particles with nonzero mass. [For a long time this was optimally
tested by high-energy electrons from accelerators. More recently the best test comes
from astrophysics: neutrinos and light from the supernova SN1987A in the Large
Magellanic Cloud reached the Earth at the same time to an accuracy of 2 � 10�9,
after a journey of 160,000 years (Longo 1987).] EPS formalize this experimental
fact as a compatibility property between the conformal and projective structure.

Axiom C1 Each event e has a neighborhood U such that an event p 2 U ; p 6D e

lies on a free particle P through e if and only if p is contained in the interior of the
light cone �e of e.
From this, it follows immediately that a projective geodesic which represents a free
particle cannot be spacelike anywhere (with respect to the conformal structure).
One can also show that a projective geodesic whose tangent vector is somewhere
lightlike, is a null geodesic. Referring to Fig. 2.4, we consider an event p 2 �e, and a

Fig. 2.4 Particle paths
P1; : : : ; Pn, approaching the
light cone �e . Their tangent
vectors T �n at e approach a
lightlike vector T �, which is
tangent to �e
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series of events qn from the interior of �e (and in an appropriate neighborhoodU of
e) with limn!1 qn D p. Then, Axiom C1 states that there are free particles Pn.�n/
connecting e and qn. The parameters �n of these paths can be chosen in such a way
that, in the geodesic equation (2.12) of Sect. 2.3, all kn are zero, and also such that
Pn.�n D 0/ D e and Pn.�n D 1/ D qn. Standard theorems of differential equations
then imply that the series of tangent vectors T �n at e converges: limn!1 T

�
n D T �,

and T � can only be timelike or lightlike. If T � were timelike, it would define a
free particle path P meeting the event p 2 �e , contradicting axiom C1. Therefore
we have g��T �T � D 0. If d

d� .g��T
�T �/ 6D 0, the quantity g��T �T � would have

to change sign in a neighborhood U , and T � would have to become spacelike,
contradicting the fact that P is the limit of free particle paths. Since P obeys the
geodesic equation (of second order), it must therefore be lightlike throughout U . If
P entered the interior of �e at some event q, there would be two paths between e and
q, one being a free particle path with timelike tangent at e, the other the projective
geodesic P with lightlike tangent at e. This contradicts the unique local definition
of a free particle path by two events. Since P is then everywhere lightlike and lies
completely in the null hyperspace �e, a lightlike projective geodesic is necessarily a
null geodesic.

It should be clear in this way that the Axiom C1 also establishes a mathematical
relation between the connectionsK�

�	 and˘�

�	 whose difference��

�	 D ˘
�

�	 �K�

�	

behaves as a type (1,2) tensor. For a conformal and projective geodesic with tangent
vector T �, both (2.3) of Sect. 2.2 (with factor k2) and (2.12) of Sect. 2.3 (with factor
k1) are valid. Subtraction of these equations results in��

�	T
�T 	 D .k1�k2/T �, and

contraction of this equation with T� gives��

�	T�T
�T 	 D 0 for all lightlike vectors

T �. From this, and from the symmetry of ˘�

�	 in the lower indices, it follows that

˘
�

�	 D K
�

�	 C �
g�	b

� C ı
�

	 c� C ı�� c	
�
; (2.18)

with, to begin with, arbitrary vectors b� and covectors c� . In the local inertial system
with ˘�

�	.e/ D 0, the light rays are straight, but not all K�

�	.e/ have to be zero.
Next we perform a ‘natural’ sharpening of the compatibility between conformal

and projective structure which is also implicitly contained in the work of EPS.

Axiom C2 A lightlike vector T � stays lightlike not only by parallel transport along
itself (null geodesic), but also by parallel transport along an arbitrary curve x�.t/
with tangent vector S� D dx�=dt .
In mathematical terms, Axiom C2 has the form

d

dt
.g��T

�T �/ D S	g��;	T
�T � C 2g��T

� dT �

dt
D 0 ; (2.19)

for g��T �T � D 0. For this special parallel transport of T �, we make the ansatz
dT �=dt D �A�	�S	T � , without additional terms proportional to S� and T �
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[compare with (2.15) of Sect. 2.3], and call A�	� the affine connection. Of course,
this special connection is also related to the conformal connectionK�

	� by

A�	� D K�
	� C .g	�b

� C ı�� c	 C ı�	c�/: (2.20)

Inserting (2.20) and the expression forK�
	� [(2.2) from Sect. 2.2] into (2.19) leads to

2T�S
�
�
.b� C c�/T

�
� D 0 :

Since T�S� is not generally zero, and since there exists a basis of four lightlike
vectors T � at the event e, we get b� D �c�, and (2.20) simplifies to

A�	� D K�
	� C .ı�	c� C ı�� c	 � g	�c

�/: (2.21)

The term g	�c
� forbids the application of projective transformations to A�	� , i.e.,

the above ‘natural condition’ fixes a unique affine parameter t (up to linear
transformations) on any curve x�.t/. Following EPS, a manifold M with conformal
and projective structures, these being compatible in the sense of Axioms C1 and C2,
is called a Weyl structure.

It is particularly satisfying that there exist simple geometric constructions (and
physical Gedanken experiments) for this affine parameter t along the path of a free
particle P1. In all these proposals, one aims to construct a neighboring parallel P2
to P1. Light signals reflected between P1 and P2 then serve as an affine timekeeper,
or as a geometrodynamical clock. [In a practical realization, the momentum transfer
of the light signal would have the effect that P1 and P2 drift apart. However, for
‘good realizations’, this effect is only noticeable after 1013 clock ticks (Harvey
1976).] What is presumed to be the simplest parallel construction has been given in
Castagnino (1968), a construction which essentially realizes the Desargues figure in
a special case (see Fig. 2.5, and compare with Fig. 1.2 of Sect. 1.4). One constructs
the parallel to P1 through an event B by starting with an event A on P1 in the
past of B (in the interior of the backward light cone of B). A and B then define
a free particle path P . From A light is sent to an arbitrary neighboring event A0
and reflected back to A00 on P1. One chooses e on P such that A0 and A00 lie in
the past of e, and constructs the free particle paths P 0 D A0e and P 00 D A00e.
One then sends light from B to B 0 on P 0 and reflects it back to B 00 on P 00. If the
whole construction is confined to an appropriate neighborhood U of A and e, the
local Desargues theorem (Axiom P2 of Sect. 2.3) is applicable, i.e., the free particle
path P2 connecting B and B 00 is parallel to P1 (does not meet P1 in U ), because
the light ray BB 0 results from AA0 by parallel transport along P , and similarly
B 0B 00 from A0A00 along P 00. Due to the local isotropy of the light propagation and
of the projective structure of free particles, the affine parameter t defined by light
reflection between P1 and P2 is also independent of the specific parallel P2 one has
constructed. (A concrete approximate realization of a geometrodynamical clock is
given, e.g., by light or radar reflection between an Earth station and a geostationary
satellite.)
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Fig. 2.5 The construction of
two timelike parallels P1, P2
according to the Desargues
theorem. Light signals
reflected between P1 and P2
then define a
geometrodynamical clock

P1 P2 P

P

A

B

B

A

A

B

P

e

Quite interesting is a quasi-global extension of this geometrodynamical clock.
Here the paths P1 and P2 do not generally remain parallel (no distant parallelism!),
and the light reflected between them defines a time parameter Qt deviating from the
affine parameter t on P1. In order to prolong the parameter t , one has to construct
the parallels to P1 at events A1;A2; : : : (in the neighborhood of A) anew at each
event. However, the resulting parallel OP is then no longer a global geodesic, and
its deviations, and the differences between t and Qt , are governed by the equation of
geodesic deviation [compare with (2.8) of Sect. 2.2]:

d2

dt2
•x� D Q�

��


dx�

dt

dx�

dt
•x
 ; (2.22)

where Q�
��
 is the curvature tensor constructed from the affine connection A��	. In

this way the curvature tensor can, in principle, also be measured by geometrody-
namical clocks.

The Weyl and affine structures do not yet generally induce a metric structure
on M , although we have defined a unique affine parameter on geodesics, and
have already spoken of clocks. However, a metric is realized in M only if for
any pair p; q of neighboring events there exists a unique distance function d.p; q/
with appropriate properties like the triangle inequality. In contrast, for the affine
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parameter t on the geodesicP1, it is not yet guaranteed that by its ‘natural transport’
with light rays (Einstein’s synchronization rule), it transforms to the affine parameter
on P2. In the local coordinate system with K�

�	.e/ D 0, the curvature tensor of
(2.22) has the structure Q���
 D OR���
 C g��F�
 , where the tensor OR���
 , being
antisymmetric in �; �, differs from the tensor in (2.8) of Sect. 2.2 only by trace terms
with factors c�c� and c�;�, and where F�
 D c
;� � c�;
 . With dx�=dt D T �, (2.22)
then reads

d2

dt2
•x� D OR���
T �T �•x
 C T �.F�
T

�•x
 / ; (2.23)

where the first term on the right-hand side is, due to the antisymmetry of OR���
 ,
orthogonal to T �. We now state a still sharper, but again ‘natural’ extension of the
compatibility between conformal and projective structure.

Axiom C3 If the affine parameter t of a geodesicP1 is transferred by light reflection
to a neighboring parallel geodesic P2, the result is the affine parameter of P2.
According to this axiom, a vector •x� between P1 and P2 which was orthogonal to
T � at one place, has to stay orthogonal during the transport along P1, i.e., in (2.23),
the term proportional to T � has to vanish, with the consequence F�
 D 0. But then
the vector c
 has the form of a gradient . 1

2
log˝2/;
 ; and the relation between A��	

andK�

�	 reads

A
�

�	 D K
�

�	 C 1

2˝2

�
ı�� ˝

2
;	 C ı

�

	˝
2
;� � g�	˝

2;�
�
: (2.24)

According to Sect. 2.2, the additional ˝2-dependent terms can be eliminated by
a gauge transformation, leading to A��	 D K

�

�	, and we end up with (up to a
constant factor) a unique metric and its appertaining connections, the so-called
Christoffel symbols  �

�	. In summary, the manifold with Weyl structure becomes
a semi-Riemannian manifold.

A popular alternative to Axiom C3 is the Riemann axiom, according to which the
transport of the affine parameter or of the geometrodynamical clock is independent
of the path taken between a starting point and an end point. [Still another route was
recently taken in Matveev and Trautman (2014). These authors reach the metric
structure in one step by a new, extended compatibility criterion between conformal
and projective structure.] The Riemann axiom is, at least indirectly, open for an
experimental test. Although the geometrodynamical clocks according to Marzke–
Wheeler, Kundt–Hoffmann, and Castagnino are difficult to realize experimentally,
‘gravitational clocks’ as given by ephemeris time, solar time due to the Earth’s
rotation, and pulsar timing are based essentially on free bodies and light rays. Now
almost by definition, such clocks are not transportable. However, as stated at the
beginning of Sect. 2.2, some of these astrophysical clocks coincide with the best
laboratory clocks, in particular atomic clocks, with accuracy up to 10�15. The latter
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are of course transportable, and their independence of the transport route or of their
‘prehistory’ has been tested with an accuracy up to 10�10 (Hafele and Keating 1972).

Historically, it is remarkable that H. Weyl in Weyl (1918b) postulated a non-
vanishing tensor F�
 (which he called ‘Streckenkrümmung’) in his attempt to unify
gravitation and electromagnetism into one geometric theory. Besides the transport
dependence of clocks and rulers, which was immediately criticized by Einstein,
such a theory must also be rejected because electromagnetism is not a universal,
geometric force: there is no substitute for the equivalence principle, and charged
particles with different mass-to-charge-ratio move on different paths. (Compare
with the statement in Sect. 1.4 that the Lorentz force of electrodynamics is the
simplest Minkowski force that cannot be transformed away.) However, as already
mentioned in Sect. 2.1, Weyl’s ideas, and in particular his gauge principle, have
witnessed a glorious revival in modern elementary particle theory.

Another experimental test which is intimately connected with the compatibility
between conformal and projective structure is the gravitational redshift. Here
typically, e.g., in the Pound–Rebka experiment (Pound and Rebka 1960), the
characteristic frequencies �0 and �h of atomic nuclei A at the Earth’s surface and
B at height h are compared. In such relatively local experiments, special relativity
is sure to be a sufficient approximation, and spacetime curvature is irrelevant.
The question is only whether the local inertial system in which the light velocity
has the universal value c is firmly connected to (a) the Earth, or to (b) a freely
falling particle P , with compatibility only in the latter case. Since particles with
constant acceleration g describe hyperbolas in a Minkowski diagram, we have the
two pictures of Fig. 2.6. Obviously, only the alternative (b) gives the correct redshift
��=� 	 gh=c2.

Fig. 2.6 Two Minkowski diagrams for the free fall of particle P to Earth. Left: Free fall and the
emission of consecutive photons in the rest system of the Earth [situation (a)]. Right: Likewise, in
the rest system of P [situation (b)]
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Returning to the mathematics of a metric manifold M , we have, as already
mentioned, the formula for the Christoffel symbols:


�

�	 D A
�

�	 D K
�

�	 D 1

2
g��.g��;	 C g�	;� � g�	;�/ : (2.25)

This implies immediately

g��I	 D 0 ; (2.26)

which is presumably the most compact mathematical expression for the compatibil-
ity between conformal and projective structure. For the Riemann curvature tensor
R
�
��
 , we have in the local inertial system,

R
�
��
 I� D R���
;� D  �

�
;�� �  �
��;
� ; (2.27)

and this immediately implies the Bianchi identities (Bianchi 1902), viz.,

R
�
��
 I� CR

�
�
�I� CR

�
���I
 D 0 ; (2.28)

and by taking the trace, the contracted Bianchi identities, viz.,

R
�
��
 I� D R�
 I� �R��I
 : (2.29)

Due to the symmetries of the Riemann tensor, both (2.28) and (2.29) comprise 20
independent equations, and the contracted Bianchi identities are even equivalent to
the more complicated looking original Bianchi identities. Equation (2.29) can also
be transcribed into a (differential!) relation between the Weyl tensor C�

��
 and the
Ricci tensor R�
 D R

�
��
 and the scalar curvature R D g�
R�
 :

C
�
��
 I� D 1

2
.R�
 I� � R��I
 /� 1

12
.g�
R;� � g��R;
 / : (2.30)

Historically, it is remarkable that these nice and important Bianchi identities were
unknown to Einstein, Hilbert, and Weyl, and to the rest of the physics community
investigating general relativity. And this lack of knowledge was a decisive obstacle
for an earlier and more elegant derivation of the correct Einstein field equations, i.e.,
of the way in which matter produces gravitational fields in the form of a spacetime
curvature (see Sect. 3.1). For some interesting history concerning the role of the
Bianchi identities in general relativity, and in particular in Pauli’s famous original
encyclopedia article of 1921 and in its English reedition of 1958, see the Pauli
biography by C. Enz (2002, pp. 30–35).
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Chapter 3
Einstein’s Field Equations, Their Special
Mathematical Structure, and Some of Their
Remarkable Physical Predictions

3.1 Many Different Routes to Einstein’s Field Equations

In this section we first discuss some essential steps which Einstein took on his
long and tedious route to the final formulation of general relativity, a route which
is characterized by revolutionary and glorious ideas, but also (with hindsight) by
distressing physical and mathematical errors and misjudgements. Then we report
on the many different routes to general relativity which have been investigated
up to today, and we argue that this quasi-uniqueness and ‘inevitability’ of general
relativity is a special strength of this relativistic theory of gravitation. (Nevertheless,
we cannot speak of a logical ‘derivation’ of the theory, since this would be
impossible for any theory applying to new types of physical phenomena.)

The first very important step in the direction of a new and relativistic theory
of gravitation is contained in Einstein’s overview of special relativity in his article
for the Jahrbuch der Radioaktivität und Elektronik (Einstein 1907). Here Einstein
asks (on p. 454, in the last part of this article) whether the relativity principle can
be extended to systems which are accelerated relative to each other. In particular, he
postulates what became known later as the Einstein equivalence principle, according
to which a reference system in uniform translational acceleration and a rest system
with a homogeneous gravitational field are completely equivalent concerning all
nongravitational physical phenomena. Later, in a draft for an invited article for the
journal Nature in 1921, Einstein called this equivalence principle “the happiest
thought of my life” [see the Einstein biography by Pais (1982, pp. 177–178)].
Already in 1884 H. Hertz in a lecture on the constitution of matter, stressed the
equality of inertial and gravitational mass as a remarkable fact of nature (Hertz
1884, pp. 121–122):

Most miraculous is the connection between the gravitation of matter and its inertia. We see
that any of two quantities of matter with the same inertia will exert the same gravitational
effect on each other, irrespective of the substances they are made of. [. . . ] And in reality we
do have two properties before us, two most fundamental properties of matter, which must
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be thought of as being completely independent of each other, but which, in our experience,
and only in our experience, appear to be exactly equal. This correspondence must mean
much more than a mere miracle; it demands an explanation. We may suppose that a simple
and intelligible explanation is also possible, and that such an explanation will provide an
extensive insight into the constitution of matter.

On the basis of his equivalence principle, Einstein argues in Einstein (1907) that
gravitational fields will influence the frequency of clocks and of spectral lines, that
light rays are curved, and that the law E D mc2 applies also to the gravitational
mass. From today’s perspective, it has to be said that the equivalence principle
still plays an important but also very delicate role [see, e.g., the articles Ohanian
(1977) and Norton (1985)]. First, it has to be stressed that a precise equivalence
principle can at best be valid locally, as was also stressed by Einstein in Einstein
(1912b). A global homogeneous gravitational field is unrealistic in any case, and
a Minkowskian reference system in arbitrary acceleration remains flat, whereas
genuine gravitational fields are represented by curved manifolds (but see our
quasiglobal equivalence principle in Sects. 3.3 and 4.2). But even a local equivalence
principle has its problems, because, besides other difficulties, in the final theory of
general relativity, test particles with spin move on paths deviating (slightly) from
geodesics, as was first proven in Papapetrou (1951). An extremely negative point of
view concerning the equivalence principle is taken by J. Synge in the preface to his
textbook on general relativity (Synge 1960, pp. IX–X):

The Principle of Equivalence performed the essential office of midwife at the birth of
general relativity, but, as Einstein remarked, the infant would never have got beyond its
long-clothes had it not been for Minkowski’s concept. I suggest that the midwife be now
buried with appropriate honours and the facts of absolute space-time be faced.

This drastic formulation surely contains a grain of truth, and in the final
mathematical formulation of general relativity the equivalence principle is no longer
really necessary. However, it is convenient, and it has been general practice in the
physics literature up to today, to retain various kinds of equivalence principles as
essential pillars of general relativity, which allow one to understand, or even predict,
some mathematical consequences of this theory heuristically by qualitative physical
reasoning.

The principle makes it plausible that the theory of gravity has to be a metric
theory, that gravity couples universally and minimally to all physical systems,
and that locally all physical laws attain their special relativistic form and are
independent of the position and velocity of the relevant measuring equipment. In
today’s textbook literature [see in particular Will (1993)], there usually appear,
besides the Einstein equivalence principle, a so-called weak equivalence principle,
expressing essentially the equality of inertial and gravitational mass, and a strong
equivalence principle, extending the Einstein equivalence principle to systems with
nontrivial and strong gravitational fields, with important consequences for, e.g., the
Earth–Moon–Sun system (Nordtvedt effect), and for strongly bound astrophysical
systems. In summary, the equivalence principle makes it plausible that a relativity
theory generalized to accelerated systems is automatically a theory of gravity, and
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that conversely, a satisfying theory of gravity can only be formulated through a
generalized relativity postulate. The textbook (Misner et al. 1973, p. 207) compares
the role of the equivalence principle in general relativity with the role of the
correspondence principle in quantum mechanics:

The vehicle that carries one from classical mechanics to quantum mechanics is the corre-
spondence principle. Similarly, the vehicle between flat spacetime and curved spacetime is
the equivalence principle.

A second important step on Einstein’s route to general relativity is of course
his introduction of a non-Euclidean geometry, and in particular, a four-dimensional
Riemannian geometry g��.x	/ of spacetime. The beginning of such thoughts can be
traced back to a letter to A. Sommerfeld on 29 September 1909 (Klein et al. 1993,
Doc. 179), in which he writes:

The treatment of the uniformly rotating rigid body seems to me to be of great importance
on account of an extension of the relativity principle to uniformly rotating systems along
analogous lines of thought to those I tried to carry out for uniformly accelerated translation
in the last section of my paper published in the Zeitschrift für Radioaktivität (Einstein 1907).

At this time the problem of rotating rigid bodies in special relativity was being
actively pursued by quite a number of theoretical physicists (M. Born, P. Ehrenfest,
G. Herglotz, T. Kaluza, F. Noether, and others), initiated mainly by a model for a
rigidly rotating electron in Born (1909). Ehrenfest (1909) hinted at a contradiction
(later called the Ehrenfest paradox) that would occur for all rigid bodies rotating
around a fixed axis: whereas the periphery of such a body suffers a length
contraction, the radius stays invariant. This statement was immediately interpreted
by the above authors to the effect that a rotating disk has to be described by a non-
Euclidean geometry. Einstein discussed these problems with Born, Sommerfeld,
and others in 1909 (e.g., at the Naturforscher-Versammlung in Salzburg), but first
published about them in Einstein (1912a). And in 1916, in his first review article
on the final version of general relativity, Einstein says: “Hence Euclidean geometry
does not apply to [the system of the rotating disk]”. In spring 1913, Einstein took
a big and quite surprising step by introducing for fundamental spacetime (and not
only for rigid bodies) a four-dimensional Riemannian geometry g��.x	/ in the so-
called Entwurf paper (Einstein and Grossmann 1913), although up to this time he
had, even in special-relativistic calculations, not used the elegant four-dimensional
formalism of Minkowski.

In retrospect it has, however, to be stressed that the above ‘derivation’ of a
non-Euclidean geometry on a rotating rigid disk is not tenable: length contraction
is a phenomenon relating two inertial systems, and by no means an invariant
statement. At least since 1959 it has been known that whether and what length
contraction appears in the observation of a rod depends decisively on the details of
the experiment. Moreover, we have seen in Sects. 2.2 and 2.3 that a two-dimensional
manifold (e.g., of the rotating disk) has neither a conformal nor a projective
curvature. From today’s perspective, presumably the most convincing argument that
a relativistic gravity theory fulfilling the Einstein equivalence principle necessitates
a curved Riemannian geometry comes from one of the alternative routes to the
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Einstein field equations to be discussed below as route 5: beginning with a special-
relativistic linear field theory for a massless spin-2 field, the equivalence principle
(the energy of this field couples back, generating a nonlinear correction to the
original field equation) starts an iterative process, resulting uniquely in Einstein’s
field equations in a curved manifold, and leaving the original Minkowski metric as
an idle artefact.

But even before the Entwurf paper, in his year in Prague, Einstein derived
important physical results concerning a future relativistic gravity theory satisfying
his equivalence principle. In Einstein (1911), he discussed in more detail than in
Einstein (1907) the gravitational effects of energy and the connection between the
redshift and the gravitational potential. He also discussed the variability of the light
velocity in a gravitational field, and he announced with particular pleasure that the
deflection of light passing by the rim of the Sun would be approximately 1 arcsec,
and might therefore be measurable. In Einstein (1912a), he developed the first, still
linear and scalar, relativistic gravity theory for static gravitational fields which was
compatible with the equivalence principle for uniform translational acceleration.
In Einstein (1912b), he extended this to a nonlinear theory (due to the energy of
the gravitational field), discussed in detail the interactions between electromagnetic
fields and this static gravity field, as well as thermodynamic aspects, and finally
derived a Lagrangian form for the equations of motion in this gravity field. In
Einstein (1912c), he applied this theory to a special model: he introduced a spherical
mass shell (still useful today in the final version of general relativity, as described
in Sect. 4.2), and argued that a linear acceleration of this shell would induce a
(small) acceleration of test bodies inside the shell. This was the first calculation of
a (Machian) dragging effect in a gravity theory. (We will come back to this paper as
a stimulus for more detailed dragging calculations in general relativity in Sect. 4.2.)

In the period August 1912 to May 1913, there are no publications by Ein-
stein on gravity theory. But there is the quite important Zurich notebook (Klein
1995, pp. 192–269) covering presumably just this period. The evaluation of
this notebook by historians of science (see, e.g., Norton 1984) has resulted in
decisive clarifications concerning Einstein’s route to the Entwurf paper (Einstein
and Grossmann 1913), and even to the final theory of general relativity. For instance,
the notebook together with his earlier work in Einstein (1907, 1911, 1912a,b,c)
reveals that Einstein gradually propounded the following heuristic principles for a
future relativistic gravity theory, although to the best of our knowledge he nowhere
formulated things in this systematic and explicit form:

• It should be based on a Riemannian geometry g��.x	/ (appearing already on
the first pages of the notebook), and this should be the only gravitational field
variable.

• The field equations for g�� should be of second order and nonlinear.
• The equivalence principle should be realized as completely as possible, and

therefore the field equations should be covariant with respect to as many coordi-
nate transformations as possible, including the transformation to accelerated, and
if possible to rotating reference systems.



3.1 Many Different Routes to Einstein’s Field Equations 83

• The source of the gravitational field must be the whole (symmetric) energy–
momentum tensor T�� of all matter and electromagnetic fields, i.e., we are
dealing with a tensorial gravity theory. (According to special relativity, the
energy density % D T00 is necessarily connected to the momentum density T0i ,
and according to the momentum conservation law, the momentum density is
connected to a momentum–current density Tik, including also the pressure com-
ponents Tii. At that time, this whole complex of the energy–momentum tensor
T�� was also already well known from Maxwell’s relativistic electrodynamics.)
Scalar gravity theories, as investigated around the same time by G. Nordström,
M. Abraham, and G. Mie, have to be rejected because their scalar source T ��
would be zero for electromagnetic radiation, whereas this clearly has energy.

• The field equations have to be compatible with energy and momentum con-
servation for the whole system composed of matter and electromagnetic and
gravitational fields.

• In the appropriate limits, the new theory has to coincide with Newtonian gravity,
and with the static relativistic theory of Einstein (1912b).

The notebook also gives us an insight into the way Einstein gradually came to
understand Riemannian geometry with the help of his friend the mathematician M.
Grossmann. It was a very difficult and unusual field for a physicist to study at this
time. In this connection the notebook reveals that Einstein and Grossmann even
considered setting the Riemann tensor and the Ricci tensor for the gravitational
field proportional to the energy–momentum tensor. In this way, by the spring of
1913, they had already come “within a hair’s breadth” (Norton 1984) of the correct
field equations for the final version of general relativity of November 1915, at least
in the linearized form. (This judgement is literally confirmed by Einstein in his first
paper Einstein (1915a) of November 1915; see below.) However, they rejected this
ansatz because they (erroneously) believed that it did not fulfil the last principle
of the above list. [They did not recognize that the Newtonian limit does not have
the standard form �˚ D 4�� in all reference systems. Furthermore, they did not
realize that static relativistic gravitational fields do not always have to reduce to one
potential, and are not always spatially flat, as in Einstein (1912b).]

The end of the notebook then indicates alternative field equations which are more
explicitly motivated and formulated in the Entwurf paper (Einstein and Grossmann
1913). (Since these equations are quite complicated and no longer play any role
in today’s gravity theory, we shall not give their detailed form.) However, Einstein
stuck to these equations for more than 2 years, and tried to justify and ‘derive’ them,
one can say, with growing despair. For instance, he found that these equations are
not generally covariant, not even for transformations to rotating reference systems.
Many of his following arguments are based on the hypothesis “that the field be
mathematically completely determined by matter”, e.g., in a letter to L. Hopf of
2 November 1913, published in Klein et al. (1993, Doc. 480). (‘Completely’ or
‘uniquely’ should here be understood in the physical sense, i.e., it would have been
clear to Einstein that the g�� change in going to other coordinates.)
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Nevertheless, we know today that the above hypothesis is fundamentally wrong:
mathematically, the manifold of different solutions of given partial differential
equations of second order goes far beyond the choice of coordinates. Physically,
we know that, e.g., for the vacuum (T�� � 0), besides the Minkowski solution,
there exist many different solutions of the Einstein equations: Schwarzschild, Kerr,
exact wave solutions, etc. In contrast, from the above hypothesis, Einstein derived
that generally covariant field equations are physically unacceptable, e.g., by the
‘notorious’ hole argument [change of g�� only in a hole region where T�� is zero; for
more details see Norton (1984)]. However, besides such erroneous conclusions from
the Entwurf theory, Einstein also reached (at least qualitatively) interesting, new, and
lasting consequences of such a nonlinear and tensorial relativistic gravity theory.
For instance, in Einstein (1914) he says: “We have no means of distinguishing a
‘centrifugal field’ from a gravitational field. [. . . ] we may consider the centrifugal
field to be a gravitational field.” Indeed, as we will show explicitly in Sect. 4.2 and
in Appendix B, there are models of slowly rotating mass shells in general relativity
which produce a correct centrifugal field as a gravitational field.

This situation lasted until autumn 1915, when Einstein came to realize the
decisive errors and misconceptions in the Entwurf paper, and in the later publi-
cations based on it. In an admirably short time in three papers of November 1915,
he arrived at the correct (Einstein) field equations of the final version of general
relativity. In Einstein (1915a) of 4 November, he returned to (almost) general
covariance, although with the restriction that the trace of the metric tensor should
remain unchanged, with the consequence that the theory applies only to matter
with T �� D 0. His field equations set the Ricci tensor proportional to the energy–
momentum tensor, and he confirms that (in contrast to his statement in 1912–1913)
these equations have the correct Newtonian limit. He also explicitly formulates as
follows: “In fact we [Einstein and Grossmann] had already at that time [1912–1913]
come quite near to the solution of the problem that is given in what follows.” In the
paper Einstein (1915b) of 18 November, he did an approximate calculation (small
deviations up to second order from the Minkowski metric) of the perihelion advance
of Mercury, with the agreeable result of 43 arcsec per century. For the deflection
of light passing by the Sun he found (thanks to the spacetime curvature) twice
the value of his earlier calculation in Einstein (1911). (The fact that he still had
the wrong relation between the Ricci tensor and the energy–momentum tensor did
not matter because both effects are governed by the vacuum equations.) Finally, in
Einstein (1915c) of 25 November, he removed the restriction on the trace of the
metric tensor and arrived at a fully covariant theory. Furthermore, he changed the
relation between the Ricci tensor and the energy–momentum tensor in such a way
that it is compatible with the energy–momentum conservation laws. In this way, he
arrived at the Einstein field equations (in today’s notation)

G�� D R�� � 1

2
Rg�� D 8�T�� : (3.1)
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(Since he did not know of the Bianchi identities at that time, as already mentioned
at the end of Sect. 2.4, he did not see that conservation of energy and momentum
followed elegantly and automatically from G�� I� D 8�T �� I� D 0.) In a letter
to A. Sommerfeld on 9 December 1915 (Schulman 1998, Doc.161), Einstein
called (3.1) “the most valuable discovery I have made in my life”.

Before finishing our analysis of Einstein’s route to general relativity, we would
like to make two more remarks. The first concerns D. Hilbert. As is well known,
Hilbert published in Hilbert (1916) the correct field equations of general relativity
(by a different method, namely an action principle) around the same time as
Einstein. In this connection, it has to be said that Hilbert learnt about the status of
Einstein’s project of a relativistic gravity theory and its mathematical and physical
difficulties from six 2-h lectures which Einstein gave in Göttingen in June 1915, and
from letter exchanges after this time. Furthermore, a more recent evaluation (Corry
et al. 1997) of the publication process of Hilbert’s paper (Hilbert 1916) has revealed
that the paper submitted on 20 November 1915, 5 days before the submission of
Einstein’s paper (Einstein 1915c), did not contain the correct field equations. These
only appeared in the heavily revised version, published on 31 March 1916. This
does not of course imply that Hilbert plagiarized the correct form from Einstein, but
it makes it clear that the priority in publishing the correct final version of general
relativity lies with Einstein.

The second remark concerns once more the Entwurf paper (Einstein and Gross-
mann 1913). Although this paper contains no applications of the new theory, such
applications were calculated by Einstein with his friend M. Besso in the so-called
Einstein–Besso manuscript (Klein 1995, pp. 344–473), written mostly in June 1913.
The main part of this manuscript addresses the calculation of the perihelion advance
of Mercury, which Einstein had already mentioned as a central goal for a future
relativistic gravity theory in a letter to C. Habicht on 24 December 1907 (Klein
et al. 1993, p. 82). However, the result in the Entwurf theory was only 18 arcsec
per century, as opposed to the observed value of 45 arcsec. Furthermore, Einstein
and Besso calculated three so-called dragging effects in this manuscript: the linear
dragging of a test mass inside a linearly accelerated mass shell [compare Einstein’s
paper (Einstein 1912c)], the rotational (Coriolis) dragging inside a rotating mass
shell (half the value in the final version of general relativity), and a motion of the
planetary nodes in the field of the rotating sun (one fourth of the value in general
relativity). It is interesting to note which parts of this manuscript Einstein presented
in his brilliant speech at the Naturforscher-Versammlung in Vienna on 21 September
1913 (Einstein 1913), and which parts he omitted. It is also remarkable that all these
(non-Newtonian!) gravitational effects already come out qualitatively correctly in
the Entwurf theory, although by factors 2–4 smaller than in general relativity. (We
shall come back to the above dragging effects, their calculation, and their physical
role in general relativity in Sect. 4.2.)

It is a remarkable feature of general relativity that its basic equations, Einstein’s
field equations, can be motivated or even ‘derived’ along many alternative routes,
based on very different suppositions. In its Box 17.2, the textbook (Misner et al.
1973) (MTW) gives six such different routes. In the following we refer to these
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routes, to some only very briefly, to others more extensively. In addition, we report
on some progress and some new views on this topic, published since 1973.

Route 1 in the list of MTW is closest to Einstein’s own approach to his field
equations. It asks, and analyzes mathematically, what singles out the Einstein tensor
G�� of (3.1) from other metric tensors. As early as 1916–1922, the following result
was indicated in Einstein (1916), and derived in Vermeil (1917), Weyl (1922), and
Cartan (1922): a covariant, symmetric, and divergence-free 2-tensor (in order to
produce the automatic conservation of energy and momentum), whose coefficients
are functions only of the metric and its first and second derivatives, and which is
linear in the second derivatives, is necessarily a sum aG�� C bg�� , with constants a
and b (cosmological constant, usually denoted by�). Considerably later, the above
conditions could be much weakened in Lovelock (1969) and Lovelock (1972): in
the physical dimension 4, the symmetry of the tensor, and its linearity in the second
derivatives are already a consequence of the other conditions. Still later, it was
argued (Aldersley 1977; Navarro and Sancho 2008) with the help of a so-called
dimensional analysis that this ‘derivation’ of the Einstein tensor can be extended to
arbitrary dimensions, and to a dependence also on higher derivatives of the metric.

Route 2 in MTW’s list is based on a variational principle, and it is in some sense
the simplest and quickest route. As remarked above, it was first taken in Hilbert
(1916). If the (scalar!) Lagrangian density of this variational principle is linear in
the second derivatives of the metric, contains no higher derivatives, and vanishes in
flat spacetime, it has, up to a constant factor, to be the scalar curvature invariant R,
and variation of the integral

R
R

p�gd4x with respect to the metric leads uniquely
to the Einstein vacuum equations. In detail, this process is somewhat tricky. Since
the curvature scalar R contains second derivatives of the metric, one might expect
the resulting field equations to be of third order. (And there does not exist a scalar
containing only the first derivatives of the metric!) However, it turns out that the
‘dangerous terms’ in the integral can be combined into a four-divergence which
does not contribute to the variation of the integral. Addition of an appropriate matter
Lagrangian then results in the full Einstein equations.

According to Palatini (1919) there exists an alternative variation of the above
integral, motivated by the Hamiltonian formulation of classical mechanics, such
that the metric g�� and the Christoffel symbols  �

�	 are varied as independent
variables. Then, besides Einstein’s field equations, the relation between  �

�	 and
the first derivatives g��;	 follows [see (2.25) in Sect. 2.4]. Route 2 is also very
appropriate for constructing relativistic gravity theories different from general
relativity. For instance, in recent times, the so-called f .R/ theories of gravity have
seen much activity. Here the scalar curvature invariantR in the variational integral is
replaced by some nonlinear function f .R/. Such extensions of general relativity are
motivated by difficulties with Einstein’s theory, mainly in cosmology (dark matter,
dark energy, accelerated expansion), and in the problem of quantizing the gravity
theory. However, it should be said that until now no preferred function f .R/ has
shown up, and many models have difficulty reproducing all the observational facts,
such as the existence of compact stars and black holes. For reviews of such f .R/
theories see Sotirio and Faraoni (2010) and De Felice and Tsujikawa (2010).
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Route 3 of MTW is based on data solely on a spacelike slice, the hypersurface of
simultaneity S of an observer with four-velocity u. He/she sets the sum of the
intrinsic curvature .3/R of S and the scalar of the extrinsic curvature tensor K
proportional to the local energy density % D T��u�u� , in the form

.3/RC .TrK/2 � TrK2 D 16�% :

It can then be shown that the validity of this equation on every slice of every space-
like hypersurface S results in the full four-dimensional Einstein field equations.

Route 4 of MTW proceeds by analogy with the Hamilton–Jacobi formulation of
classical mechanics, and is based on the concept of ‘superspace’ (Wheeler 1962).
This is an infinite-dimensional space of (diffeomorphic equivalence classes of)
three-geometries S .gij/. The Hamilton–Jacobi equation

� .16�/2

2g

�
gimgjn C gingjm � gijgmn

�•S
•gij

•S

•gmn
C .3/R D 16�% (3.2)

characterizes the three-geometries which fit into a dynamic four-geometry, or which
guarantee a constructive interference of the wavefronts of S . It can then be shown
(Gerlach 1977) that all ten Einstein field equations follow from (3.2). The concept of
superspace has also been the basis for attempts to find a quantum theory of gravity.

In some ways the most surprising and most interesting route to the Einstein
field equations is route 5 in the list of MTW. This route was initiated in Gupta
(1954) and Kraichnan (1955), was partly worked out in Thirring (1961) and in the
1963 Caltech lectures on gravitation by Feynman (1995), and brought to an elegant
conclusion in Deser (1970). The route has its source in (special relativistic) field
theory and elementary particle physics. If gravity has any chance of being described
in this scheme, one has to start with ‘particles’ (so-called gravitons) of mass zero
and spin two, due to the infinite range and the tensor character of a relativistic
gravity theory. Such a relativistic wave equation was first derived in Fierz and Pauli
(1939). However, as a linear equation, it violates the equivalence between energy
and mass. In order to remedy this inconsistency, the energy of the spin-2-field,
being quadratic in the field amplitude, has to couple back as a source of the field
equation. In this way, an iterative process (a type of renormalization) is started which
has to be continued infinitely, in order to guarantee conservation of energy and
momentum. (In the Deser formulation, this infinite series is cut short to one ‘simple’
self-interaction.) The final result of this process is the full, nonlinear Einstein field
equations in a curved manifold, and the fulfillment of the equivalence principle. The
original flat space-time metric remains only as an unobservable artefact. As already
remarked above, this represents presumably the most convincing argument for a
curved Riemannian geometry for any consistent relativistic gravity theory. In the
words of Wheeler, “curvature without curvature”.

In connection with the different routes to the Einstein field equations, and in
particular concerning route 5, a comment on string theory seems to be appropriate.
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Sometimes one can read statements like “these theories have the remarkable
property of predicting gravity” (Witten 1996), or “String theory incorporates and
unifies the central principles of physics: quantum mechanics, gauge symmetry, and
general relativity” (Polchinski 1998, p. 429). However, a more careful and more
realistic analysis reveals that this is not really true: That string theory incorporates
electrodynamics, and therefore vibration patterns of the type of massless spin-one
photons, should be a minimum requirement for a theory, sometimes advertised as a
‘theory of everything’. It is then not too surprising that it also allows for massless
spin-two-excitations (gravitons) with their corresponding linear field equations.
However, for the nonlinear back-coupling of the gravitational field energy, summing
up to the full Einstein equations, string theory has never provided another recipe
than the one indicated above as route 5, and which was established well before
the different ‘string revolutions’ set in. So one has to come to the conclusion that
string theory, besides lacking any successful experimental prediction or test in
elementary particle physics, also does not really contribute to the cornerstones of
general relativity, the equivalence principle, and the many spectacular predictions
in astrophysics and cosmology, based on its nonlinearities and on the spacetime
curvature (see Sect. 3.3).

The last route 6 in the MTW list, is based on a hypothesis due to Sakharov (1968),
also referred to as the ‘metric elasticity of space’. This suggests that the curvature
of spacetime leads to a correction term to the vacuum polarization Lagrangian of
elementary particles, which should (not too surprisingly) be proportional to the
curvature scalar R. Equating the coupling constant of this term with the reciprocal
of Newton’s constant G results in a cutoff of the momentum integral at the Planck
length kP 	 p

c3=„G 	 10�33 cm. To our knowledge this approach to general
relativity has not led to any deeper understanding or indeed found any confirmation.

A very interesting and surprising ‘derivation’ of Einstein’s field equations beyond
the MTW list was propounded in Jacobson (1995). It is based on the consideration
of black holes as thermodynamical systems fulfilling appropriate thermodynamic
laws (Bardeen et al. 1973, Sect. 3.3). In this scheme, the heat Q is defined
as the energy that flows across a causal (black hole or Rindler) horizon. The
entropy S is chosen proportional to the horizon area, and the temperature T is
chosen as the Unruh temperature (made up of vacuum fluctuations) of a uniformly
accelerating observer hovering just inside the horizon. In order to apply the laws
of equilibrium thermodynamics, the equivalence principle is invoked: one views a
small neighborhood of each spacetime point p as a piece of flat spacetime, and
chooses the null normal congruence, defining the horizon, such that its expansion
and shear vanish at p. It can then be proven [with the help of the Raychaudhuri
equation (Raychaudhuri 1955)] that the fundamental Clausius relation dS D •Q=T

of equilibrium thermodynamics can only be fulfilled if the spacetime curvature
obeys Einstein’s field equations, playing here the role of an equation of state. A
subsequent paper (Eling et al. 2006) contains some corrections to these arguments,
and a proposal for a generalization to nonequilibrium thermodynamics.
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A last, quite formal route to Einstein’s field equations of general relativity
is closely connected with the four-dimensional analysis of Newtonian theory in
Sects. 1.5 and 1.6 (Friedman 1983, Sects. V.1 and V.2). As mentioned there,
a reformulation of Newtonian gravity as a four-dimensional spacetime theory
provides a way to convert—with hindsight—the Newtonian field equations into their
relativistic generalization by simply comparing the different spacetime structures of
the two theories. [As Malament (2012, p. 162) puts it: “This seems to me one of
the nicest routes to Einstein’s equations.”] In the four-dimensional Newtonian (or
Galilean) theory we introduced a pair of symmetric and singular metric tensors on
the spacetime manifold M , viz., a temporal metric with components

t˛ˇ D t˛tˇ D @t

@x˛
@t

@xˇ
;

and a spatial metric with components s˛ˇ . Then the formulation of Poisson’s
equation in Friedrichs (1927), viz.,

R�� D t��s

�˚I
 I� D 4�%t�t� ; (3.3)

may be reformulated by introducing the tensor T �� WD %u�u� , with u� D dx�=dt .
This tensor field describes a continuous distribution of pressureless dust, with mass
density T 00 D % and momentum density T �0 D %u�. Replacing the scalar field %
by this tensor T�� D t�� t�
T

�
 D %t�t� in (3.3), we get

R�� D 4� T�� : (3.4)

In this way, the tensor field T�� is the source of Poisson’s equation. Since we have
t˛ˇT

˛ˇ D %, (3.4) may be rewritten as

R�� D 8�

�
t�˛t�ˇT

˛ˇ � 1

2
t��t˛ˇT

˛ˇ

�
: (3.5)

The formal transition from these Newtonian field equations to Einstein’s field
equations of general relativity is based on a change in the metric structure of
space-time, i.e., by replacing the singular temporal metric t˛ˇ and the singular
spatial metric s˛ˇ of Newtonian theory by the (non-singular) semi-Riemannnian
metric tensor g�� of the curved space-time manifold in the final version of
general relativity, and interpreting T �� now as the total energy–momentum tensor
(replacing the mass density % as the single source of gravity):

R�� D 8�

�
g�˛g�ˇT

˛ˇ � 1

2
g��g˛ˇT

˛ˇ

�
: (3.6)
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Since R D 8�T and T D g˛ˇT
˛ˇ , this is equivalent to the usual formulation of

Einstein’s equation

G�� D R�� � 1

2
g��R D 8�T�� :

In this way, the different (metric) structures of the spacetime manifold M underly-
ing Newtonian theory and general relativity are the essential key to passing from the
non-relativistic to the relativistic field equations. But in contrast to Einstein’s field
equation (3.6), in the Newtonian counterpart (3.5) neither a conservation law for
the stress–energy tensor, nor the equation of motion are consequences of the field
equations. As already remarked in Sect. 1.6, it is most satisfying that the reverse
transition can also be made mathematically rigorous: Ehlers’ frame theory offers
the possibility to state such a limit relation between Newtonian and Einsteinian
gravitation theory. (For the Newtonian limit of Einstein’s theory of general relativity,
see Ehlers (1981) and references therein.)

3.2 The Very Special Structure of Einstein’s Field Equations
and Some of Their Mathematical Consequences

The Einstein field equations G��.g	�/ D R�� � Rg��=2 D 8�T�� are, for
given energy–momentum tensor T�� , a system of ten coupled partial differential
equations (PDEs) of second order for the metric components g	�.x
 /. Since the
second derivatives g��;	� appear linearly in the Einstein tensor G�� , they are (in
the nomenclature of mathematics) quasilinear differential equations. But they are
not semilinear, because the second derivatives have coefficients which depend on
g�� . The first derivatives g��;	 appear quadratically, since G�� is quadratic in the
Christoffel symbols  �

�	. The metric components g�� themselves enter the Einstein
equations in a very complicated, highly nonlinear form, mainly because the dual
tensor g�� also appears in the expression for  �

�	, and hence also in the Einstein
tensor G�� . It has to be said that the general mathematical theory of systems of
quasilinear PDEs of second order is not much help in answering important physical
questions in general relativity, mainly because the general theorems available are
in a sense too weak and unspecific. Where such questions have been successfully
answered, it was usually due to the very special structure of Einstein’s field
equations.

The ten Einstein field equations G�� D 8�T�� are not all independent because,
as we have seen already in Sect. 2.4, they are connected by the contracted Bianchi
identities

G�� I� D 8�T �� I� D 0 : (3.7)
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Therefore, there are only six independent differential equations for the determina-
tion of the ten unknown metric potentials g��.x	/. The remaining four degrees
of freedom correspond just to the freedom to perform coordinate transformations
x	 ! x0	 D f 	.x�/ with four free functions f 	. Equations (3.7) play a very
characteristic and deep role in general relativity. This ‘automatic conservation of
energy and momentum’ has the consequence that the equations of motion for
any matter model already follow from Einstein’s field equations. For this to be
possible, the nonlinearity of Einstein’s field equations is decisive. (In a linear theory
like Maxwell’s electrodynamics, or Newtonian physics, the superposition principle
forbids such a consequence.)

For instance, if T �� describes a ‘free point particle’, we get the geodesic
equation, as a generalization of Newton’s first law of motion of Chap. 1. However,
the details are quite delicate here, concerning the limit of infinitesimal spatial extent
of the particles, the exclusion of a back-reaction of the particles on the ‘exterior’
spacetime, and the elimination of a possible inner rotation (spin) of the matter.
Progress on these problems has only come quite recently in Ehlers and Geroch
(2004) and Yang (2014). For the energy–momentum tensor of the electrodynamic
field, (3.7) leads to the Coulomb and Lorentz force laws. If T�� describes a viscous
fluid, there result the Navier–Stokes equations, and similarly for all other physically
realistic matter models. In this way, the Einstein field equations encompass the
whole of classical physics, and therefore are (by definition) the most universal, but
also the most complicated equations of classical physics.

It is very satisfying that this fundamental relation (3.7) of general relativity also
has a simple, purely geometrical visualization, as was first discovered in Cartan
(1928), and explicated in more detail in Wheeler (1964) and (Misner et al. 1973,
Chap. 15). The geometrical basis of this relation is the fact that the two-dimensional
boundary of the three-dimensional boundary of any four-dimensional piece of
a Riemannian manifold is identically zero. Application to Cartan’s ‘moment of
rotation’ �G D e
G
�d3S� leads to the contracted Bianchi identities, and therefore,
due to Einstein’s field equations, to the automatic conservation of energy and
momentum.

In any field of physics, the duty of its mathematical formulation is to predict
the future evolution from some given ‘initial’ arrangement, as, e.g., in Newton’s
second law (see Sect. 1.6). It turns out that this program has a very special,
quite difficult, but also interesting structure in general relativity. This begins with
the fact that the choice of an ‘initial hypersurface’ S .x0 D 0/ is already a
nontrivial problem, because S must be everywhere spacelike, already requiring
some knowledge of the (to be derived) metric field g��.x	/. There are even solutions
of Einstein’s field equations, like the Gödel solution (Gödel 1949), which have no
global, everywhere spacelike hypersurfaces whatsoever, and which even contain
closed timelike curves. (Quite generally, the Gödel solution, although far from
describing our actual cosmos, is a mathematically interesting counterexample for
many physically expectations in general relativity. For example, in mathematical
terms, the Gödel solution is not globally hyperbolic.)
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On the other hand, locally, according to the equivalence principle, we have
everywhere approximately Minkowski geometry, and therefore no problem with the
definition of a time x0 and a piece of a spacelike hypersurface S .x0 D 0/. But this
quasi-local initial value or Cauchy problem still leads to severe problems in general
relativity: which initial data can be freely prescribed on the (smooth) surface S ,
and by which constraints can they be restricted? Do the Einstein equations provide
a unique future evolution of these data, and what is the corresponding domain of
dependence DC.S / which can be predicted? Relative to the time coordinate x0

and the spatial coordinates xi in S the ten Einstein equations can be divided into
the following groups:

R00 D �1
2
gikgik;00 CM00 D 8�

�
T00 � 1

2
g00T

�
; (3.8)

Ri0 D 1

2
gk0gik;00 CMi0 D 8�

�
Ti0 � 1

2
gi0T

�
; (3.9)

Rik D �1
2
g00gik;00 CMik D 8�

�
Tik � 1

2
gikT

�
; (3.10)

where the termsM�� depend only on g�� , g��;	, g��;ik, and g��;i0, and not on second
time derivatives, so that these can be prescribed (up to constraints) onS . We see that
there are no differential equations of second order in x0 for the metric components
g�0. The derivatives g�0;00 can therefore be freely attributed on S . One could for
instance choose g�0;00 � 0 on S . A more convenient choice are the so-called
harmonic coordinates given (with the covariant derivative r�) by the condition
r�r�x� D 0, or by @�.

p�gg��/ D 0, and which are comparable to the Lorenz
gauge condition in electrodynamics. As already mentioned, the ten equations (3.8)–
(3.10) are not all independent. Indeed, appropriate combinations give the following
constraints which have to be satisfied onS (in geometrical terms, the constraints are
the conditions that the hypersurface S can be embedded in some four-dimensional
spacetime which is a solution of Einstein’s equations):

g00Ri0 C g0kRik D g00Mi0 C g0kMik D 8�T 0i ; (3.11)

g00R00 � gikRik D g00M00 � gikMik D 16�T 00 ; (3.12)

which can also be combined to the Einstein equations G�0 D 8�T�0. These
constraints only have to be satisfied on S , and are then (due to the contracted
Bianchi identities) automatically satisfied at later times [in DC.S /�.

A detailed analysis of (3.11)–(3.12) shows that they are elliptic differential
equations: the second space derivatives appear in the form aik@2g��=@x

i @xk with
a positive definite matrix aik. For such equations, a well-posed problem is the
boundary value problem (of Dirichlet or Neumann type). At least for a special case
we will come back to such problems and their solvability below, and in Sect. 3.3.



3.2 The Very Special Structure of Einstein’s Field Equations 93

The above analysis also answers the question of the number of (local) degrees
of freedom of a general gravitational field. To begin with, we have on S the
six quantities gik (the intrinsic curvature or first fundamental form of S ), and
the six quantities gik;0 (the extrinsic curvature or second fundamental form of
S ). However, due to the four constraints (3.11)–(3.12) and due to the additional
coordinate freedom (gauge transformations) and freedom in the choice of the
hypersurface S , these reduce to four true degrees of freedom, of which two can
be connected to the matter fields, and the other two to the vacuum gravitational
field, e.g., to gravitational waves. (These results are quite similar to the situation in
electrodynamics.) In general, it is of course impossible to reduce globally to four
degrees of freedom, i.e., to eliminate the constraint equations explicitly. (Compare
with the problem of anholonomic constraints in classical mechanics.)

Coming back to the initial value problem for the Einstein field equations, a
first relatively simple observation was already made in Hilbert (2007): for analytic
initial data, the Cauchy problem is uniquely solvable according to the well-known
Cauchy–Kowalewski theorem. However, for general relativity this statement is of
little use. A quite general argument for this is the fact that the Cauchy–Kowalewski
theorem cannot deal with the issue of the causal propagation of any field. More
concretely and specifically for gravity we may argue that any gravitational field
should finally be produced by some matter, and surely we have no analyticity at
the boundary between matter and vacuum. Furthermore, the physically interesting
global vacuum solutions typically have singularities. For non-analytic initial data,
but with differentiability properties such that the quantities in (3.8)–(3.12) are well
defined, the analysis of the Cauchy problem affords specific, mathematically quite
involved techniques.

After important preliminary work by Stellmacher, Lichnerowicz, and Leray, the
breakthrough came with the seminal paper (Choquet-(Fourès-)Bruhat 1952) by
Y. Choquet-Bruhat (see also Choquet-Bruhat 1962). Using harmonic coordinates
and the techniques of Sobolev spaces, she succeeded in finding a successive solution
of the problem, beginning with data sufficiently near flat spacetime. [For the
mathematical details and for the proofs of the essential theorems, see the book
Hawking and Ellis (1973, Chap. 7).] In this way, it was possible for the first time
to prove the unique local solvability of the Cauchy problem, first of all for the
vacuum Einstein equations. For the matter equations, appropriate conditions like
energy conditions have to be fulfilled, and there are models (e.g., particles with
spin greater than one) for which the initial value problem is not well-posed. In
the later work (Choquet-Bruhat and Geroch 1969), it was shown that the Cauchy
development covers a maximal region DC.S /. (There are, however, solutions like
the Gödel solution and the anti-DeSitter solution where globally different Cauchy
surfaces have different maximal developments.)

The solution of the Cauchy problem proves not only the fundamental fact that
general relativity is a predictive theory, it shows also that the gravitational field at
an event p 2 M depends only on initial data in and on the backward lightcone  �

p ,
i.e., that gravitation propagates (locally) with the speed of light. Globally, however,
it may happen that two events p and q are connected ‘at the same time’ by spacelike,
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lightlike, and timelike paths, or that there is more than one lightlike path between
p and q, as for instance in the case of multiple images of quasars due to focusing
by intervening matter (galaxies). For a recent textbook on the above and some other
mathematical questions in general relativity, see Choquet-Bruhat (2008).

As announced above, the ‘equivalent’ to the Cauchy problem for hyperbolic (e.g.,
time evolution) equations is the boundary value problem (of Dirichlet or Neumann
type) for elliptic (systems of) differential equations, as they show up in general
relativity in the constraint equations (3.11) and (3.12), and for stationary systems
with a global timelike Killing vector. As far as we are aware, there are so far
no general existence and uniqueness results for such boundary value problems. In
the case of the constraint equations, there are partial results, e.g., in O’Murchadha
and York (1973). For the stationary vacuum Einstein equations, there is a general
existence proof in Reula (1989) for asymptotically flat solutions, characterized by
small data on a sphere, where it is also proven (using the implicit function theorem)
that, for such data, the freedom is the same as that available from a multipole
moment expansion at infinity. A more or less complete proof for the solvability
of the Dirichlet boundary value problem is available in Schaudt and Pfister (1996)
and Schaudt (1998) for the stationary and axisymmetric Einstein equations, which
have particular importance for rotating equilibrium stars (see Sect. 3.3).

Of special interest here, is the fact that one cannot expect existence of such
solutions for arbitrarily large data because it is qualitatively known that for data
belonging to ‘stars’ with mass–radius ratios M=R > 1 and with angular momenta
J=R2 > 1, the gravitational collapse phenomenon and instability against rotational
disruption forbid the existence of such solutions. (This is in characteristic contrast
to the linear theory of electrodynamics, where the existence of boundary value
solutions even for large data is no problem, but only the construction of explicit
Green functions for appropriately simple geometries of the boundary.) Indeed in
Schaudt and Pfister (1996) and Schaudt (1998), the existence of Dirichlet solutions
was proven only for data restricted by M=R < 1=100 and J=R2 < 200. For a
topologically spherical boundary, one can always find coordinates such that the
boundary is a geometrical sphere with radius R. The essential Einstein equations
can then be written so that the second derivatives have the form of flat Laplacians in
different space dimensions, and the exterior of the sphere is inverted to the interior.
The Einstein equations can then be interpreted as a mapping in an appropriate
Banach space, where the norm depends essentially on the derivatives of the metric
potentials, and a more or less standard application of Banach’s fixed point theorem
proves by iteration the unique solvability of the Dirichlet problem for data limited
as above. (Better optimized norms and more refined estimates may improve the
above limits.) In principle, this method of proof is also applicable to the Einstein
equations in the interior matter region of a rotating star, but the details then depend
on the equation of state and the rotation law.

From the mathematical side, it is of particular interest that the quadratic
dependence of the Einstein tensor on the metric derivatives is a kind of ‘watershed’
for elliptic systems of second-order PDEs: if these derivatives appear to sub-
quadratic order, the Dirichlet problem is generically solvable (Ladyzhenskaya and
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Uraltseva 1968); in the quadratic case additional conditions have to be fulfilled (as
is obviously the case for the Einstein equations); if the derivatives appear to an order
higher than quadratic, there are even analytic boundary data for which the Dirichlet
problem is not solvable (Serrin 1969). [This is bad news for most alternative gravity
theories like the f .R/ theories mentioned in Sect. 3.1.] It is remarkable that one
of the best numerical codes (Bonazzola et al. 1993) for global solutions of rotating
relativistic stars uses a mathematical scheme very similar to the above Dirichlet
analysis, and the exponential convergence of this numerical iteration process is the
typical property of a Banach fixed point argument. This gives hope that the above
mathematical scheme may also work for the global (free boundary!) problem of
rotating stars. However, as yet the remarks in Schaudt and Pfister (1996) about
solutions for white dwarf stars and concerning the hoop conjecture (see Sect. 3.3)
have only the character of plausibility arguments. A strict existence proof for
rotating star solutions in general relativity seems still to be limited to the work
(Heilig 1995) for slowly rotating and nearly Newtonian stars, where, due to the
method of the implicit function theorem, nobody can say how relativistic these stars
may be.

Another topic of fundamental physical importance in general relativity, but
of considerable mathematical difficulty, is the so-called positive energy theorem.
Quite generally, the concept of energy plays a very special and delicate role in
general relativity. This begins with the fact that there is no notion of a local
gravitational energy density: by analogy with electrodynamics and other relativistic
field theories, such an energy density should be quadratic in the potential derivatives
g��;	. But according to the equivalence principle, these derivatives can all be made
zero locally, and in appropriate coordinates. In more recent times there have been
attempts to define so-called quasi-local energy expressions for finite regions of
spacetime. However, all the different proposals (e.g., by Komar, Hawking, and
Bartnik) have deficiencies, and they are in agreement and consistent only in cases
of high symmetry. For an overview see Szabados (2004).

The positive energy theorem as such applies to spacelike slices of ‘isolated
systems’, whose matter is concentrated in a finite region of space, and whose
spatial metric approaches asymptotically the flat Euclidean metric. In appropriate
coordinates one has for r ! 1:

gij ! ıij CO.r�1/ ; gij;k D O.r�2/ ; gij;kl D O.r�3/ :

Strictly speaking, isolated systems represent an idealization, because all physical
systems are finally a part of our whole cosmos. However, for systems like planets,
stars, and even whole galaxies, the influence of the rest of the universe is in
most cases almost arbitrarily small. Furthermore, for the cosmos as a whole the
concept of energy loses much of its usual significance anyway, since we cannot
define or measure the total energy ‘from the outside’. And there are surely also
problems with the usual energy conservation law because, due to phenomena like
the initial big bang and cosmic expansion, there is no time symmetry, so the
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usual connection between time symmetry and conservation of energy—according
to Noether’s theorem—does not apply.

Coming back to isolated systems, it is qualitatively expected that a total energy
can be consistently defined for them, and that this energy will be non-negative if the
matter obeys physically reasonable local energy conditions. The standard condition
of this type is the ‘dominant energy condition’ T 00 � jT �� j for all �; �. (For
quantum matter and vacuum polarization, this condition may be violated. Also in
cosmology other matter forms may play a role.) In terms of Newtonian gravity
and special relativity, the problem with the positivity of energy is the following:
whereas the mass energy given by E D mc2 and the kinetic energy are surely
positive, the gravitational interaction energy is, due to the attractive gravitational
force, always negative, and the question is whether the sum of all these energy forms
will nevertheless be non-negative in all physically realistic cases of isolated systems.

The answer to this question in the universal classical theory of general relativity
turned out to be conceptually and mathematically quite difficult. The usual definition
of total energy of a spacelike slice with asymptotically Euclidean metric is given by
the so-called ADM energy

E D P0 D lim
r!1

1

16�

Z
dSi.@j gij � @igjj/ ;

according to the Hamiltonian formulation of general relativity by Arnowitt et al.
(1962). The corresponding three-momentum is given by

P i D lim
r!1

1

8�

Z
dSj .K

i
j � ıijK/ ;

with the extrinsic curvature tensor Kij of the spacelike slice. After obtaining some
results for the positivity of this energy P0 in special cases, the first more general
problem was tackled in Brill and Deser (1968): the Minkowski spacetime (with
P0 D 0) is a ‘local’ minimum of energy, i.e., all ‘small’ deviations from Minkowski
have positive energy. Some mathematical deficiencies of this work were removed
in Choquet-Bruhat and Marsden (1976). The full proof of the positive energy
conjecture, i.e., that Minkowski is the absolute energy minimum for all isolated
systems with dominant energy condition (or, more generally, that P� is timelike
and future-directed, and vanishes only for flat spacetime) was then spelt out in two
seminal papers by Schoen and Yau, first in Schoen and Yau (1979) for the case
where P0 is calculated on a maximal slice (with K D 0), then in Schoen and Yau
(1981) for the general case, where the spacelike slice was also allowed to have more
than one asymptotically flat end.

These papers were based on a proof by contradiction within a variational analy-
sis, and they had to use quite heavy mathematical machinery (geometric measure
theory and Sobolev inequalities). Surprisingly, shortly afterwards a completely
different (and in a way much simpler) proof was presented in Witten (1981),
motivated by attempts to build a so-called supergravity, and using spinor methods.



3.2 The Very Special Structure of Einstein’s Field Equations 97

A loophole in this proof (existence of solutions of the Witten equation) was
independently closed shortly afterwards in Taubes and Parker (1982) and Reula
(1982).

Whereas all other classical physical theories leave open the ‘absolute zero’ of
energy, general relativity is now singled out by fixing this value due to the positive
energy theorem. In any case, this theorem represents a deep self-consistency of
general relativity. And this fact and the methods of proof have turned out to be
important also for other fundamental questions in general relativity.

Besides the above ADM energy, another energy expression for isolated systems
is of importance in general relativity, particularly in connection with gravitational
waves. This ‘Bondi energy’ is not defined at spacelike infinity but at lightlike
infinity (on Scri J ), and this energy is also expected to be non-negative for
‘reasonable’ physical systems, and typically decreasing in time due to the emission
of gravitational radiation. Indeed, these conjectures were proven at the same time,
simultaneously by geometric methods in Schoen and Yau (1982) and by spinor
methods in Horowitz and Perry (1982) and Ludvigsen and Vickers (1982).

Concerning the positive energy theorem, most alternative gravity theories are
inferior to general relativity in the sense that the positivity question remains open,
or that it is explicitly proven that the theorem is wrong. A prominent example of
the latter case is the five-dimensional Kaluza–Klein theory which was originally (in
the years 1921–1926) constructed as a unification of gravity with electromagnetism,
but which has, in more recent times, received attention and extensions far beyond
this aim. However, it was shown in Witten (1982) that the ground state of this
theory is unstable against a semiclassical decay process. And in Brill and Pfister
(1989), relatively simple (although topologically nontrivial) explicit, asymptotically
flat solutions were constructed which have arbitrarily negative energy. Moreover,
in string and superstring theories, no positive energy theorem is generally valid,
as shown, e.g., in Brill and Horowitz (1991). Quite generally, there is reason to
be very critical of the higher-dimensional theories which have been so popular in
recent times: these higher dimensions provide so many new ‘degrees of freedom’,
and leave so many alternatives undecided, that the often unequivocal physical
consequences in four-dimensional spacetime get completely lost. A useful intuitive
view of this dilemma opens if one goes in the other direction and imagines living
in a two-dimensional space, with so few structures, without bridges, tunnels, rivers,
trees, birds, airplanes, etc. [See also the popular book Square (1884).]

With the proof of the positive energy theorem, and therefore with the fact
that Minkowski spacetime is the ground state for isolated systems in general
relativity, the question arises—as with the ground state in any other field of
theoretical physics—whether this solution is stable with respect to arbitrary (small)
modifications, because in nature we can never expect to have the idealization of strict
vacuum and maximal symmetry, as is the case for the Minkowski solution. And by
stability is meant not only stability against first order perturbations, but full so-called
nonlinear stability. In general relativity it turned out that this proof (usually confined
to the initial data set, i.e., to the Cauchy problem) is mathematically extremely
fastidious and involved. The first proof in Christodoulou and Klainerman (1993)
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filled a book of more than 500 pages, although it was later shortened to an article
Klainerman and Nicolò (1999) of 85 pages.

Besides the Minkowski solution, the same stability question was also addressed
for the vacuum and maximally symmetric solutions of the Einstein equations with
cosmological constant �, i.e., where the Einstein tensor G�� is replaced by G�� C
�g�� . For the so-called deSitter solution with � > 0, it turned out that the proof
in Friedrich (1986) is simpler than for the Minkowski solution. In contrast, for the
anti-deSitter solution with � < 0 (which is not globally hyperbolic!), the stability
question is still not completely decided. There are indications of unstable modes in
Bizoń and Rostworowski (2011), but it is still unclear how large and realistic such
a class of unstable modes is, and how it depends on boundary conditions (Friedrich
2014).

Among the many additional mathematical consequences of the very special struc-
ture of Einstein’s field equations, the last one we would like to address explicitly is
possibly the most surprising and the most dramatic, namely the so-called singularity
theorems. Already at the birth of general relativity, the Schwarzschild solution

ds2 D �.1 � 2M=r/dt2 C .1 � 2M=r/�1dr2 C r2d˝2

revealed that there are exact and physically realistic solutions of Einstein’s field
equations which show space-time singularities: besides the real (curvature) singu-
larity at the center r D 0, it was thought for a long time that the region r D 2M

is also singular. Only around the year 1960 was it proven that this region is only a
coordinate singularity, although nevertheless a remarkable region called a horizon
from whose interior r < 2M no signals can escape to the exterior r > 2M . Some
authors, e.g., Lifschitz and Khalatnikov (1963), believed that such singularities
are only due to the high symmetry of the Schwarzschild solution, but then in
the pioneering paper (Penrose 1965), R. Penrose showed that the appearance of
singularities is a generic and realistic phenomenon in general relativity. To some
extent, this theory predicts its own limits!

As a central concept in his first proof of a singularity theorem, he introduced
the so-called trapped surface, a closed, spacelike two-surface T 2 with the property
that the two systems of null geodesics which meet T 2 orthogonally both converge
locally to the future. While ‘normally’ one of these systems always diverges,
in the stellar collapse process, such trapped surfaces typically appear due to the
extremely strong gravitational attraction, and this independently of any symmetry
assumptions. Penrose could then prove the following: if a connected, globally
hyperbolic spacetime with a noncompact Cauchy surface S fulfils the energy
condition R��k�k� � 0 for all null vectors k�, and if it contains a trapped surface
T 2, it has at least one inextendible future directed null-geodesic orthogonal to T 2

which has affine length no greater than 2=j�j, where � < 0 denotes the maximum
value of the ‘expansion’ of all systems of null geodesics orthogonal to T 2. [For a
proof of this and the following singularity theorems see Hawking and Ellis (1973,
Sect. 8.2).] The main ‘weak point’ of the above theorem is the demand for a Cauchy
surface S .
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Further important work, mainly by Hawking, culminated in the singularity
theorem (Hawking and Penrose 1970), which can be stated as follows. A spacetime
.M ; g��/ is not timelike and null geodesically complete if:

• The strong energy condition R��k�k� � 0 is valid for all timelike and null
vectors k�.

• A ‘timelike generic condition’ is valid, viz., each timelike geodesic with tangent
vector k� has at least one point with R��	�k�k� ¤ 0.

• There are no closed timelike curves.
• At least one of the following three conditions holds:

– .M ; g��/ describes a closed universe.
– .M ; g��/ possesses a trapped surface.
– There exists an event p 2 M such that the expansion � of all future- or

past-directed null geodesics emanating from p becomes negative, i.e., the null
geodesics from p are focused by matter or curvature.

This theorem is considerably more general than the original Penrose theorem. In
particular it gives good reason to believe that our universe is singular. Although the
theorems do not provide strict mathematical arguments concerning the character of
the singularities, it is quite plausible that, for the concrete astrophysical phenomena
represented by a star collapse or the cosmological Big Bang, the spacetime curvature
diverges. And in contrast to other divergencies which have appeared in the history
of theoretical physics, e.g., the ‘resonance catastrophe’ for a forced oscillator which
is cured by including a damping term, there is no obvious correcting mechanism
for the singularities of general relativity, at least in classical physics. [There are
cosmological models, violating the strong energy condition, and thereby avoiding
the Big Bang singularity, e.g., Rose (1986), but such models are far from solving all
singularity problems in general relativity.]

There are indications that quantum effects may change some of the above
unpleasant consequences of classical general relativity, e.g., Hawking radiation
(Hawking 1975) at the horizon of black holes, or the mitigation of the Big Bang
singularity by effects of loop quantum gravity (see, e.g., Bojowald 2001). But since,
even after decades of intensive research, no consistent union of general relativity
and quantum physics is yet visible, we encounter here the deepest crisis for general
relativity, and indeed for the whole of theoretical physics.

As a last topic in the realm of singularities in general relativity, we briefly men-
tion the ‘cosmic censorship hypothesis’ by Penrose (1969): nearly all singularities
of general relativity are ‘hidden’ by event horizons, and no ‘naked’ singularities
other than the Big Bang exist in our universe. Some sort of hypothesis of this kind
is of central importance for physics, because naked singularities would destroy the
predictive power of physics (in the ‘future’ of these singularities). However, till now
no mathematically clear-cut and physically realistic theorem of this type has been
found, and there are even (somewhat artificial) counterexamples, e.g., Shapiro and
Teukolsky (1991).
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3.3 Special, Important, and Sometimes Spectacular
Predictions of General Relativity in Physics,
Astrophysics, and Cosmology

Surely the most spectacular prediction of general relativity is the phenomenon of
black holes (BH). And even more spectacular is the fact that these in every respect
extreme objects are not just artefacts of our theoretical models but obviously abound
in the universe as superheavy galactic nuclei with more than 109 solar masses, as
collapsed heavy stars of a few solar masses, and as ‘midweight’ black holes. [One
is here reminded of a remark which Einstein made in another connection, namely in
a letter to H. Weyl (Schulman 1998, Doc. 551), dated to 31 May 1918, concerning
Weyl’s gauge principle: “Could one really accuse the Lord of inconsequence, if
He missed the opportunity to harmonize the physical world in the way found by
you?”] The simplest example of a black hole is in principle already given by
the Schwarzschild solution from 1916. But, as already mentioned in the previous
section, Schwarzschild, Einstein, and the other physicists of that time dismissed the
‘singularities’ at r D 2M and r D 0 as unrealistic mathematical artefacts.

A first hint that astrophysical objects may show extreme gravitational properties
came from the work of Chandrasekhar. He considered static, spherical, and cold
white dwarf stars in which the quantum mechanical degeneracy pressure of electrons
(due to the Pauli exclusion principle) is in equilibrium with the gravitational
pressure (Chandrasekhar 1931a,b). He found that the degeneracy pressure can
change from the nonrelativistic behavior pd � n5=3 to the relativistic behavior
pd � n4=3, similar to the gravitational pressure. Therefore, the particle density
n drops out, and there results a limiting value for the so-called Chandrasekhar
mass MC D .c„=G/3=2=m2

N 	 1:7Mˇ, where mN is the nucleon mass and Mˇ
is the solar mass. (It is quite remarkable that the fundamental constants c;„; G
together with the elementary particle quantity mN define in this way an important
mass limit for global astrophysical objects!) Since in the year 1931 the neutron
had not yet been discovered, and therefore inverse ˇ-decay was not yet known,
Chandrasekhar could not have known that, in a heavy burnt out star, the electron
gas together with the nuclei could transform into a neutron star. But in the case
of relativistic neutrons, the above consequence for a limiting mass MC persists
essentially unchanged, although with the difference that the mass density can now
reach values % 	 1016 g=cm3; beyond the nuclear density, and the mass/radius
ratio can come near to the Schwarzschild value 1/2, i.e., general relativistic effects
become important, and for the first time the full nonlinearity of general relativity
should be relevant here. (Quite generally, for the special mathematical consequences
in the previous section, and for the special physical predictions in this section, the
nonlinearity of Einstein’s field equations is crucial.)

In any case, such a mass limit, i.e., a limit for an equilibrium state in a heavy star,
raises the question of what happens to a star which, after burning all its nuclear fuel,
still has a mass greater than MC. The first quite general analysis of static spherical
cold stars within the framework of general relativity was carried out in Oppenheimer
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and Volkoff (1939) and Oppenheimer and Snyder (1939). For instance, they derived
the following differential equation governing the dependence of the pressure p on
the radius r :

dp

dr
D � .%C p/

�
m.r/C 4�r3p

�
r
�
r � 2m.r/� ; (3.13)

where m.r/ is the mass inside the sphere with radius r . [In the literature (3.13)
is often called the Tolman–Oppenheimer–Volkoff (TOV) equation, although this
general equation does not appear in Tolman (1939), but only some of its solutions
for special equations of state.] Compared to the Newtonian equation dp=dr D
�%m.r/=r2, the numerator of (3.13) gets bigger due to the pressure contributions,
and the denominator gets smaller. Therefore, in a type of ‘avalanche effect’, the
pressure can increase dramatically on the way to the stellar center. (In contrast
to standard thermodynamics, in strong field general relativity, the pressure acts
not as a repulsive expansion effect, but contributes to contraction!) A particular
consequence of this is that, for a (hypothetical) star with constant mass density %
(interior Schwarzschild solution), the pressure already diverges at r D .9=8/2M ,
i.e., before reaching the ‘horizon value’ r D 2M . Oppenheimer and Snyder also
anticipated the essential property of these objects, which later became known as
black holes (Oppenheimer and Snyder 1939): “The star thus tends to close itself
off from any communication with a distant observer.” [In the review article (Israel
1987), this paper is called “the most daring and uncannily prophetic paper ever
published in the field”.]

As mentioned in Sect. 3.2, a global analysis of the (vacuum) Schwarzschild
solution was first performed only around the year 1960. It was found that the
maximal extension of this geometry has two flat ends, and that a so-called horizon
appears at r D 2M as a type of a one-way membrane through which matter,
light, and any kind of information can only proceed from the exterior r > 2M

to the interior r < 2M , but never vice versa. A decisive push, the beginning of
a more general ‘black hole physics’, was triggered by the discovery of the Kerr
metric. However, as already mentioned in Sect. 2.2, this metric was found not so
much as the result of a systematic search for solutions of rotating stars or black
holes, but by lucky circumstances in a mathematical study of Petrov type II vacuum
solutions of Einstein’s field equations. It should also be said that this solution
represents presumably ‘only’ a rotating black hole, and not (as sometimes stated
in the literature) the exterior of non-collapsed rotating stars: intensive research over
several decades has never produced a so-called ‘interior Kerr metric’ for a physically
realistic equation of state. Moreover, the analysis of the solution manifolds for the
Dirichlet problem in the exterior and interior of a rotating star in Schaudt and
Pfister (1996) makes it entirely plausible that such a solution does not actually
exist. And in contrast to the spherical case where the Birkhoff theorem guarantees
the uniqueness (and staticity!) of the vacuum Schwarzschild solution, in the case
of stationary rotation, a constructive solution generation technique is available
(Stephani et al. 2003), producing a huge solution manifold of vacuum solutions



102 3 Einstein’s Field Equations, Their Structure and Predictions

of the field equations, depending on two free functions of one variable (e.g., the
axis potentials). For a prominent interior matter solution, the Wahlquist solution, it
is even explicitly proven in Bradley et al. (2000) that there cannot be a smooth join
to any asymptotically flat exterior vacuum solution, and in particular not to the Kerr
metric.

The growing theoretical activity in the study of extreme gravitational objects like
black holes coincided with and was supported by new and dramatic astrophysical
discoveries. Around the year 1963, so-called quasars were observed. These are very
distant but extremely luminous objects, for which masses of the order of 109 solar
masses in relatively small volumes were predicted, and which were connected with
galactic nuclei, and possibly with black holes (Lynden-Bell 1969), a name coined
by Wheeler (1968). In 1967 the first pulsar was discovered (Hewish et al. 1968)
and interpreted as a rapidly rotating neutron star, presumably the end product of a
supernova explosion. These and several other relevant observations inaugurated the
new field of relativistic astrophysics.

Of special importance was the discovery of the pulsar PSR 1913C16 in a binary
system (Hulse and Taylor 1975). This provided ways to test many predictions of
general relativity with previously unattainable precision. Observation of this system
over a long time resulted in the measurement of a decrease in its orbital period
(Taylor et al. 1979), for which the only natural explanation was an energy loss
due to the emission of gravitational radiation, and this in numerical agreement
with Einstein’s quadrupole formula from Einstein (1918). In more recent times, a
binary system consisting of two pulsars has been discovered, providing a unique
laboratory for strong gravity fields, and this has confirmed many predictions of
general relativity with unprecedented precision (Kramer and Wex 2009).

Of course, by definition, black holes can never be observed directly, and so far it
has not been possible to probe the scale of an event horizon of any BH candidate.
The clearest hint as to the existence of such extreme objects comes from measuring
the orbits of stars surrounding the object. For instance, by applying essentially
only Kepler’s laws, it has been found (Genzel et al. 2010) that, in the center of
the Milky Way (in Sagittarius A*, and within a central region of parsec diameter),
there resides a massive BH of about 4:4 � 106Mˇ. Likewise for the processes in
the nuclei of most other galaxies, the only natural explanation is the existence of
BHs, some of them with masses greater than 109Mˇ (McConnell et al. 2011).
Besides these supermassive BHs, there are reliable astrophysical observations of
many ‘midweight BHs’ with masses between 103Mˇ and 106Mˇ (Greene and Ho
2004). Furthermore, just in our own galaxy, there exist millions of ‘small BHs’
with masses between 5Mˇ and 30Mˇ (Narayan and McClintock 2014), which are
presumably the end product of stellar collapse.

Most of the observed BHs mentioned above are of course not isolated, stationary
systems describable by the vacuum Schwarzschild or Kerr solution. Rather they are
characterized (and in most cases only ‘visible’) by highly dynamical processes like
the infall of gas and matter, the formation of fast rotating accretion discs, and/or
the evolution of gamma ray bursts, the most energetic transient phenomena in the
universe.
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A general theoretical analysis of BH solutions in general relativity began around
the year 1967 and concentrated first on static and stationary systems, which can
be seen as the equilibrium end products, once the highly dynamical processes
around a star collapse, mentioned above, have settled down. Some truly remarkable
results are the black hole uniqueness theorems, also called the no-hair hair theorem,
which were first derived (not in complete mathematical generality and rigor) by
W. Israel, B. Carter, S. Hawking, and D.C. Robinson, with later generalizations
and improvements, usually by applying the positive energy theorem (see Sect. 3.2).
Today quite complete and useful reviews are available in Heusler (1996) and
Chruściel et al. (2012).

The theorems say essentially that a static BH with horizon is necessarily spherical
and identical with the Schwarzschild BH, a stationary BH rotates necessarily
axisymmetrically, and is identical with the Kerr metric, a static, charged BH is
uniquely represented by the Reissner–Nordström metric, and a rotating, charged BH
is represented by the so-called Kerr–Newman metric (Newman et al. 1965). There-
fore the stationary BH solutions of general relativity are quite simple, one might
even say the most elementary physical systems, being completely characterized by
the three parameters of mass M , angular momentum J , and charge Q. The latter
does not usually play a role in astrophysics, but is of interest in theory, mainly due to
the fact that the coupled Einstein–Maxwell equations are structurally quite similar
to the pure Einstein vacuum equations, in particular in the stationary case.

Of course, the above theorems also say that all higher mass multipoles, angular
momenta, and electromagnetic multipoles are uniquely determined byM , J , andQ.
It should also be noted that this fact once again singles out general relativity and
electromagnetism, because in alternative or higher-dimensional gravity theories,
and by coupling to other fields like Yang–Mills, additional ‘hairs’ for BH solutions
typically appear. Another ‘miraculous’ property of general relativity shows up if one
considers the gyromagnetic ratio g D 2Mm=QJ (where m is the magnetic moment,
connected with J andQ) of the above stationary BH solutions. As first observed in
Carter (1968), all these solutions have the value g D 2. Actually, this fact comprises
two ‘miracles’:

• g has the same value for all rotating, charged BHs, instead of being some
nontrivial function of the two dimensionless quantities J=M2 andQ=M .

• The g-value for the ‘elementary’ BHs of general relativity coincides with the
value g D 2 of the most elementary quantum particles like the electron, the muon
(neglecting radiation corrections), and even theW -meson, for which S. Weinberg
predicted this property in Weinberg (1970), long before the existence of this
exchange particle was confirmed experimentally in 1983.

It is still an open question whether this coincidence signals a deeper common root
between general relativity and the quantum theory of elementary particle physics,
which may even assist in the task of unifying these experimentally extremely
successful theories.

In Pfister and King (2003) we have summarized in more detail some of these
remarkable properties of the g-factor in electrodynamics, quantum theory, and
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general relativity, and we have shown that a value g 	 2 shows extreme ‘robustness’
in a class of rotating, charged, high-mass shell models. Besides the stationary
BH solutions, a value g D 2 is also valid for a huge class of other electro-
vacuum solutions of general relativity, e.g., for the Tomimatsu–Sato class, and for
all solutions generated by a Harrison transformation from an arbitrary (uncharged)
stationary and axisymmetric vacuum solution of the Einstein equations, i.e., for a
manifold of solutions depending on two arbitrary real functions and one complex
parameter (Klein 2002). In contrast, in generalized gravity theories such as Kaluza–
Klein, supergravity, theories with dilatons, string theories, etc., a value g D 2 is
not equally preferred, mainly because there is no comparable no-hair theorem, and
additional new (fermionic, dilaton, etc.) hairs contribute to the angular momentum
and to the g-factor. [For the relevant references see Pfister and King (2003).]

The fact that the stationary, i.e., the equilibrium BH solutions of general relativity
are completely characterized by the three quantities M , J , and Q, is reminiscent
of the fact that thermodynamical systems in equilibrium are also determined
by very few variables (potentials), in contrast to their complicated and multi-
faceted non-equilibrium counterparts. Indeed, the analogy between BH physics
and thermodynamics goes much deeper. As first presented in detail in Bardeen
et al. (1973), there are “four laws of black hole mechanics” [see also Wald (1984,
Sects. 12.5 and 14.4) and Heusler (1996, Chap. 7)]. The zeroth law says that the
surface gravity � is constant over the whole horizon surface of any equilibrium BH,
by analogy with the fact that an equilibrium thermodynamic system has uniform
temperature. The first law reads in the vacuum case •M D �•A=8� C ˝H•JH,
where A is the horizon surface and ˝H is its (constant!) angular velocity, and is
the analogue of the thermodynamic energy variation law •E D T •S C p•V . The
reduction of the surface gravity with angular momentum (for constant M ) implied
by the first law can be thought of as a centrifugal effect. If the BH is surrounded by
stationary matter, e.g., in the form of rotating rings, there are generalizations of this
law with additional work terms.

The analogy between horizon areaA and entropy S , already indicated by the first
law, is much strengthened by the second law: the horizon area of a BH can never
decrease with time (Hawking 1971). The third law of BH mechanics says that it is
impossible to reduce the surface gravity � to zero, by analogy with the fact that it is
impossible to reach absolute zero temperature T D 0 for a thermodynamic system.
(However, there is no analogue of the thermodynamic law limT!0 S D 0, because
the horizon area A can remain finite as � ! 0.)

In a way the deepest, but also the most controversial of the four laws of BH
mechanics is the second. An unsolved question is whether the horizon areaA is only
analogous to the entropy, or whether it can be seen as a real entropy contribution in
all respects, as, for instance, Bekenstein (1973) has postulated with his ‘generalized
entropy’

SB D Smatter C 1

4

kc3

G„A ; (3.14)
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and a generalized second law •SB � 0. By analogy with the statistical mechanical
foundation of thermodynamics, this would require the horizon area A to be under-
stood as the logarithm of the number of some microscopic, presumably quantum
mechanical states. In Wald (1984, p. 418), this difficulty is characterized by the
statement: “Since the nature of time in general relativity is drastically different from
that in nongravitational physics, it is not clear precisely how the generalized second
law will arise, even if A=4 is a measure of the number of internal states of a black
hole.” A connection between the elementary BH states of general relativity and
quantum theory is strengthened by the phenomenon of the (quantum-mechanical)
Hawking radiation (Hawking 1975) with temperature proportional to the reciprocal
of the BH mass, but the physical basis for such a connection remains unclear, and
will presumably continue to do so until a consistent quantum theory of gravitation is
available. A particular, much debated problem in this connection is the information
loss when matter and radiation are irredeemably swallowed by a BH, in apparent or
real violation of the unitary time evolution of quantum mechanics. That the four laws
of BH mechanics represent a central phenomenon of general relativity is also evident
from the fact, already explained in Sect. 3.1, that these thermodynamic properties
provide a new route to Einstein’s field equations as an equation of state (Jacobson
1995).

The above laws of BH mechanics are, as indicated, not only valid for the pure
vacuum BHs, but also, possibly with appropriate modifications, for BHs surrounded
by stationary matter. Another group of properties (equalities and inequalities) of
the pure BHs which extend to the more realistic BH C matter systems, has been
analyzed only relatively recently. It began with the observation (Ansorg and Pfister
2008) that the relation 4J 2 C Q4 D .A=4�/2 for the degenerate Kerr–Newman
BH solutions (with surface gravity � D 0) is also valid if the BH is surrounded by
quite arbitrary stationary, axisymmetric, and equatorially symmetric matter. (The
solutions do not even have to be asymptotically flat!) On the basis of a large number
of numerical solutions, it was also conjectured that the inequality

4J 2 CQ4 
 .A=4�/2 ; (3.15)

valid for all non-degenerate Kerr–Newman BHs (with equality only in the degen-
erate case), extends to the case with surrounding matter. This conjecture was then
proven in Hennig et al. (2008, 2010). That the inequality (3.15) extends even to
dynamical (but still axisymmetric) systems was first conjectured in Dain (2010),
and proven (for the uncharged case) in Dain and Reiris (2011). For the proof of the
charged case see Gabach Clément and Jaramillo (2012) and Gabach Clément et al.
(2013). (This inequality has even been extended to higher dimensions, and, e.g., to
Einstein–Maxwell–dilaton gravity.)

Another interesting inequality between the parameters appearing in the Kerr (or
Kerr–Newman) metric was also recently proven [see Dain (2008), and references
therein]: for all axisymmetric, vacuum (or electro-vacuum), asymptotically flat (but
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not necessarily stationary!), and maximal initial data (the extrinsic curvature is
trace-free) with two asymptotic ends one has jJ j 
 M2, with equality only for
the extreme Kerr solution. In a quasi-Newtonian picture one can interpret this
inequality as follows: in a collapse, the gravitational attraction (	 M2=r2) at the
horizon (r 	 M ) dominates over the centrifugal repulsive force (	 J 2=Mr3). The
electromagnetic extension was here proven in Chrusciel and Lopes Costa (2009).

A last, even deeper inequality between the parameters of a BH is the ‘Penrose
inequality’

A=16� 
 M2 (3.16)

(with equality only for the Schwarzschild spacetime), which was conjectured in
Penrose (1973). It was motivated at least partly by the cosmic censorship conjecture,
as mentioned in Sect. 3.2, because a counterexample to this inequality would imply
that cosmic censorship is not true. Since this inequality does not contain the angular
momentumJ explicitly, one can expect it to hold without any symmetry restrictions.
Of course, the Penrose inequality can be regarded as a strengthening of the positive
mass theorem (see Sect. 3.2). Up to now it has only been possible to prove the
so-called Riemannian Penrose inequality (with time-symmetric initial data with
extrinsic curvature Kab � 0), but this with two quite different methods [Huisken
and Ilmanen (2001) using the inverse mean curvature flow, and Bray (2001) using
the positive mass theorem]. Moreover, both of these methods differ from those used
to show the other inequalities mentioned above. Concerning the general (non-time-
symmetric) Penrose inequality, the extension to rotating systems with black holes
would of course be of particular astrophysical interest. For a very recent, excellent,
and non-technical review of all the above ‘geometric inequalities’ (reminiscent of
the well-known isoperimetric inequality 4�A 
 L2 between the length L of a plane
closed curve and its enclosed area A, with equality only for the circle), see Dain
(2014a).

Important and of astrophysical relevance is the possible extension of the above
inequalities between massM , angular momentum J , and surface areaA from black
holes to realistic, non-collapsed bodies, e.g., stars. A first, quite famous inequality
conjecture for the borderline between these two cases is the so-called hoop
conjecture in Thorne (1972): horizons form when and only when a mass M gets
compacted into a region whose circumference in every direction is C . 4�GM=c2.
Added is here the nice and realistic proviso: “Like most conjectures, this one is
sufficiently vague to leave room for many different mathematical formulations.”
Indeed, the difficult and partly controversial topics in attempts to reach at least
partial proofs of this conjecture concern the definition of the circumference C (or
of some other measure for the extension of the body) and of the mass M , whether
it be the asymptotic ADM mass or one of the (many different) quasi-local mass
proposals. Generally, one can say that, in the spherical case, the conjecture is more
or less settled, but the non-spherical, e.g., the fast rotating case is still wide open.
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Where strict mathematical theorems are available, the conditions are usually far
from astrophysical reality, and most of the positive answers address only the ‘when’
part of the conjecture. However, careful numerical analyses make it plausible that
some form of this conjecture is true also in the general case. For a useful review of
the hoop conjecture (up to the year 1991) see Flanagan (1991).

Very recently, a universal inequality R2.U / & jJ.U /j has been conjectured
in Dain (2014b), relating the ‘size’ R and angular momentum J for all (non-
collapsed) bodiesU , where & denotes only an order of magnitude, depending on the
definition of R.U /. In the case of a maximal, axially symmetric initial data set with
constant energy density in U , fulfilling the dominant energy condition, a precise
definition of R.U / and a complete proof of the conjecture have been provided.
Remarkably, the above inequality of general relativity, if applied to elementary
particles with spin s, results in a size R0 	 Œs.s C 1/�1=4lP, with the Planck length
lP D .G„=c3/1=2.

An interesting mathematical phenomenon in the collapse of matter to a BH
has been discovered and carefully studied only relatively recently, namely so-
called critical phenomena occurring during this gravitational collapse. [Compare
the general theory of critical phenomena, appearing, e.g., in phase transitions, and
in nonlinear dynamical systems, as described in Sornette (2009).] The example in
which this gravitational phenomenon was first (numerically) derived is the simplest
nontrivial matter model one can think of, viz., the spherically symmetric collapse
of a massless scalar field, for which deep analytic studies had already been carried
out, e.g., in Christodoulou (1991). In Choptuik (1993), the following new properties
were found (with extremely high numerical precision): in the dependence on a
parameter p which characterizes the strength of the gravitational self-interaction
of the scalar field, the BH limit p� has the character of a universal, self-similar
attractor, and the BH mass scales according to MBH � jp � p�j� , with critical
exponent � 	 0:37. (In this way, arbitrarily small BH masses, in comparison to
the overall ADM mass of the system, can be created.) Whether and in which way
these results transfer to more realistic matter models and to non-spherical, e.g.,
rotating systems, has not yet been sufficiently worked out, but some numerical
studies give reason to believe that this critical collapse is of a more general nature in
the nonlinear theory general relativity [see the review Gundlach and Martín-García
(2007)].

This brings us to the question of existence and properties of general non-
collapsed bodies in general relativity. If we are guided by astrophysical obser-
vations, a ubiquitous and relatively simple class is represented by the extremely
long-lived stars which can be well approximated by an ideal fluid in stationary
and axisymmetric rotation. (Even for brightly shining stars, the energy loss by
radiation is extremely small compared to the overall energy of the star.) Whereas in
Newtonian gravity theory there is now, as discussed in Sect. 1.6, a quite satisfying
existence theory for this class, which can also be used to deduce some important
physical properties, the situation is still embarrassingly blank in general relativity.
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And the question is by no means of purely academic interest. It is a central
consistency problem of general relativity and all the more so in that, according
to recent studies, e.g., Babichev and Langlois (2010), alternative gravity theories
like f .R/ theories and scalar–tensor theories have severe difficulties in providing a
consistent description of strong gravity neutron stars, as they are frequently observed
in the universe.

As far as we are aware, no attempts were made to clarify the existence problem
of relativistic fluid stars in general relativity prior to Rendall and Schmidt (1991)
and Lindblom and Masood-ul-Alam (1994), and then only for static and spheri-
cally symmetric bodies, and with specially designed, non-standard mathematical
methods. In Pfister (2011), a more general proof was provided, which is based on
a transcription of the Einstein equations to a system of coupled, nonlinear integral
equations, and an iterative solution of this system by the standard Banach fixed
point theorem. (This method was also successful for the corresponding Newtonian
problem in Sect. 1.6.) This proof applies to all piecewise Lipschitz continuous
equations of state %.p/, and hereby covers at least some phase transitions, as they
typically appear in strong gravity neutron stars.

However, an extension of this method to rotating bodies (and nearly all stars
in the universe rotate, some of them with millisecond periods!) has not yet been
achieved, although one of the best numerical analyses of such stars (Bonazzola
et al. 1993), which exploits a similar mathematical scheme, gives hope for the
future. Presently, the only (very partial!) existence proof for rotating stars in general
relativity comes from the work of Heilig (1995). However, since this work is based
on the implicit function theorem, it is so far impossible to assess how relativistic
or compact these stars can be, and how fast they can rotate. For instance, this
work cannot answer the astrophysically relevant question of how the Chandrasekhar
limiting mass MC (see the beginning of this section) depends on the angular
momentum J and the equation of state %.p/. [For a very recent and comprehensive
overview of many facts, methods, and problems concerning rotating relativistic
stars, see Friedman and Stergioulas (2013).]

In recent times, there has also been work on the existence of elastic bodies in
general relativity (Park 2000) and on so-called Vlasov–Einstein systems (Rein and
Rendall 1993), i.e., on a collisionless relativistic gas, which may be approximately
applicable to galaxies. But again, an extension to non-spherical systems has so far
only been possible (Andersson et al. 2010; Andréasson et al. 2011, 2014) in the
realm of the implicit function theorem, so that the same reservation applies as to the
work of Heilig above.

In the last part of this chapter, we would like to compile in a more phenomenolog-
ical way some facts about gravitation (in the form of general relativity), considering
situations where it differs drastically and characteristically from all other forces and
phenomena in nature. The first example concerns the topic of antiparticles. Whereas
all properties like electric charge, baryon number, lepton number, and strangeness
are the reverse (are ‘anti’) for antiparticles relative to their particle partners, the mass
(the ‘gravitational charge’) does not change sign. A first, very indirect experimental
proof of this fact comes from Eötvös-type experiments, i.e., from the universality of



3.3 Predictions of General Relativity in Physics, Astrophysics, and Cosmology 109

free fall (see Sect. 1.6). Since the precision for such experiments has today reached
the value 10�13 (Schlamminger et al. 2008), the contribution of the virtual electron–
positron pairs to the mass of suitable materials would be in conflict with these
experiments if the positron had negative mass. A somewhat more direct test is
provided by the neutral K mesons and their interference and decay properties into
two or three pions. Since the difference between the two mass eigenvalues of this
system is extremely small (	10�10) in relation to the overall K mass, the system
would react extremely sensitive to a negative mass of the antiparticle NK0, and this
possibility is largely excluded by the experiment (Good 1961). A direct test for the
positive mass of antiparticles is to be expected in the near future from the anti-
hydrogen atoms which can be produced at CERN, and can presumably be prepared
in such a way that their free-fall properties can be measured (CERN Courier 2013).

The second example of the very special behavior of general relativity concerns
the twin paradox. In special relativity, this phenomenon, already mentioned by
Einstein in his foundational paper of 1905, is usually formulated in the following
way: the twins start at an event e1 and meet again at an event e2. Whereas twin A
moves directly (inertially, on a straight line in Minkowski spacetime) from e1 to e2,
twinB executes a detour with acceleration phases, usually with a sudden turnaround
at the event of greatest distance from A. Then the unequivocal result, also from the
perspective of B , is that twin A is older than B at their reunion in event e2 [see
any good textbook on special relativity, or, in particular, Schild (1959)]. And this
twin paradox is so important for special relativity that, with its denial, one loses
all the central predictions of special relativity. What is not so often stressed is the
fact that the acceleration phases of B may be caused by arbitrary forces, but not
by gravitational ‘forces’! Indeed, in strong gravitational fields the analogue of the
twin paradox can have completely different results. The curved spacetime of general
relativity has the ‘singular’ property (already mentioned in Sect. 1.3) that there can
be more than one geodesic between the events e1 and e2. Even though neither twin
then experiences acceleration, the aging is typically asymmetric (Holstein and Swift
1972). In the exterior Schwarzschild metric (outside the horizon at r D 2M ), there
exist even ‘geodesic diangles’ with arbitrary time difference between their two sides.
[For a quasi-popular overview of many facts and examples in the realm of the twin
paradox, and an almost complete list of references up to 1970, see Marder (1971).
See also the recent paper Gasperini (2014).]

A third example of the very special behavior of general relativity comes from
the interplay between gravitation, quantum mechanics, and thermodynamics, and it
is one of the few examples where the (extremely small) value of the gravitational
constant G plays a decisive role. It addresses the question of an analogue to
the electromagnetic blackbody radiation which was, in the hands of Planck and
Einstein, the midwife of quantum mechanics. As already shown in Smolin (1984,
1985), at least in linearized general relativity, gravitational waves interact so weakly
with matter (fulfilling the positive energy condition) that in order to keep these
waves in a box, and to reach thermal equilibrium in a finite time, so much mass
must be accumulated in the walls of the box that it undergoes gravitational collapse.
For all reasonable absorption mechanisms for gravitational waves (e.g., by classical
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matter, quantum matter, viscous matter, phonon excitation), there results for the
absorption efficiency � a universal formula

� D
	GM

L


	 	
L


2	v
c


3
f .#/ � 1 ; (3.17)

where M and L are the mass and the spatial extension of the ‘absorber’, 	 is the
wavelength of the gravitational radiation, v is the (sound) velocity in the absorber,
and f .#/ is a function of the angle at which the radiation is incident on the detector.
Since all factors in (3.17) are less than 1, most of them much less than 1, there
does not exist any material in nature that could produce ‘blackbody gravitational
radiation’ at a definite temperature. To quote from Smolin’s papers:

We cannot argue, as did Planck and Einstein for the case of the electromagnetic field, from
the existence of an equilibrium state involving radiation and matter to the necesssity that
the energy of the field is carried and transferred to matter in quanta satisfying E D „!.
[. . . ] Gravitational radiation is a more degraded form of energy than is heat, as the thermal
energy of a solid will be slowly converted into gravitational radiation, while in general not
all of the energy of any given distribution of gravitational radiation can be converted back
into heat.

In Garfinkle and Wald (1985), a quite artificial, highly charged, and nearly
collapsed mass shell was proposed as a complete absorber and therefore thermal
equalizer of gravitational radiation. However, in Dell (1987), it was shown that,
under realistic circumstances, such a model is exposed to severe instability pro-
cesses.

A last example addresses the rarely discussed fact that thermodynamics and
statistical mechanics show very unusual, indeed counterintuitive behavior in sys-
tems dominated by gravity. Qualitatively, it is of course known that, e.g., the
‘cosmological fluid’ does not develop into a homogeneous equilibrium of fixed
temperature, as is the case for all non-gravitational closed systems, but ‘starting
from a largely structureless initial state near the Big Bang, spontaneously’ develops
many types of complex structures up to the most complex structures imaginable:
life on Earth. We have also seen at the beginning of this section that a pressure,
usually the archetypal repulsive force, acts attractively in the interior of a heavy
star, and actually contributes to its collapse. However, a more systematic study of the
peculiar thermodynamic behavior of gravitation-dominated systems began relatively
late, with Antonov (1962), in which it was shown for a spherical star system that the
phase-space volume inside the energy shell diverges for an unshielded 1=r potential
with sufficiently many particles.

This study was extended and deepened in Lynden-Bell and Wood (1968) and
Thirring (1970), with the following strange results. The heat capacity becomes
negative, with the consequence that, when two thermal systems come into contact,
the hotter one loses heat and yet gets hotter, whereas the colder one gains heat and
yet gets colder. Furthermore, the energy is no longer an extensive quantity in the
presence of long range interactions, and gravitational systems do not possess the
thermodynamic limit in the usual sense. Mathematically, the methods of the canon-
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ical and microcanonical ensembles no longer lead to equivalent results, and only
the latter is consistently applicable to gravitation-dominated systems. In Lynden-
Bell and Wood (1968), the instabilities caused by this strange thermodynamics in a
heavy star are referred to as the ‘gravo-thermal catastrophe’. For a comprehensive
review (up to 1989) of the unusual thermodynamics and statistical mechanics in
gravitation-dominated systems see Padmanabhan (1990).

Naturally, a consistent thermodynamics of gravitation-dominated systems neces-
sitates a new or extended definition of the entropy expression, to which the
gravitational field contributes presumably only through its Weyl tensor part, and
where the total entropy (matter C gravitational field) should be an extrinsic quantity
and should always be positive and monotonically increasing in time. Such a new
entropy expression, for which an interesting proposal has recently been made in
Clifton et al. (2013), may also contribute to Penrose’s hypothesis that, in the Big
Bang, the Weyl curvature vanishes (see Sect. 2.1), and to a consistent entropy
definition for black holes (see above).
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Chapter 4
Mach’s Principle, Dragging Phenomena,
and Gravitomagnetism

4.1 Early Ideas and Statements by Mach, Friedlaender,
Föppl, and Einstein

Concerning E. Mach’s critique of Newton’s mechanics, and concerning his novel
views on inertia and the relativity of rotation, reference is usually made only
to Mach’s famous mechanics book (Mach 1883). However, Mach had already
formulated these views in the year 1868 in a seminar entitled On some key issues of
physics, and published them as notes (pp. 47–51) in his booklet (Mach 1872), which
was partly stimulated by the related booklet (Neumann 1870). Here Mach writes:

Obviously, it is the same whether we think of the Earth as rotating around its axis, or we
think of the Earth as standing still, and the celestial bodies rotating around it. Geometrically
this is exactly the same case of a relative rotation between the Earth and the celestial bodies.
Only the first view is astronomically easier and simpler. But if we think of the Earth at rest
and the other celestial bodies revolving around it, there is no flattening of the Earth, no
Foucault’s experiment, and so on—at least according to our usual conception of the law of
inertia. Now, one can solve the difficulty in two ways; either all motion is absolute, or our
law of inertia is wrongly expressed. Neumann preferred the first supposition, I the second.
The law of inertia must be so conceived that exactly the same thing results from the second
supposition as from the first. By this it will be evident that, in its expression, regard must be
paid to the masses of the universe. [: : :] Now, what share has every mass in the determination
of direction and velocity in the law of inertia? No definite answer can be give to this by our
experiences. We only know that the share of the nearest masses vanishes in comparison
with that of the farthest. We would, then, be able completely to make out the facts known
to us if, for example, we were to make the simple supposition that all bodies act in the
way of determination proportionally to their masses and independently of the distance, or
proportionally to the distance and so on.

In his mechanics book (Mach 1883), Mach essentially repeats the above views
and hypotheses, and partly extends on them. An additional quotation from this book,
which is of particular interest in connection with dragging models in Sect. 4.2, is the
following:
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The principles of mechanics can, presumably, be so conceived, that even for relative
rotations, centrifugal forces arise. Newton’s experiment with the rotating vessel of water
simply informs us that the relative rotation of the water with respect to the sides of the
vessel produces no noticeable centrifugal forces, but that such forces are produced by its
relative rotation with respect to the masses of the Earth and other celestial bodies. No one
is competent to say how the experiment would turn out if the sides of the vessel increased
in thickness and mass till they were ultimately several leagues thick.

The calculations in Brill and Cohen (1966) and Pfister and Braun (1985)
precisely confirm, within general relativity, that a rotating heavy mass shell does
indeed induce in its interior the correct centrifugal (and Coriolis) forces (see also
Sect. 4.2 and Appendix B). But Mach presumably did not try to formulate, or
perhaps failed to formulate, a new version of the law of inertia consistent with
his above views. Furthermore, he did not give a recipe for eliminating Newton’s
absolute space and time (as was then accomplished by Neumann and Lange, see
Sect. 1.2), and nor did he propose a new ‘gravitational’ force produced by moving,
e.g., rotating masses.

As far as we are aware, such an attempt was first formulated by the Friedlaender
brothers in Friedlaender and Friedlaender (1896). This booklet was decisively
influenced by Mach’s mechanics book (even though I. Friedlaender says at one
point “Without knowing that this had already been done by Mach”), but it also
presents ideas and views going far beyond Mach’s work, and even partly anticipating
ideas developed much later by Einstein. In accordance with Mach, the Friedlaenders
demand an improved form of the law of inertia such that the centrifugal force is
explicable through relative motions alone, without resorting to absolute motion. But
going beyond Mach, they propose a solution of this problem in connection with a
generalization of the law of gravitation. In the words of I. Friedlaender:

It seems to me that the correct form of the law of inertia will only have been found when
relative inertia as an effect of masses on each other and gravitation, which is also an effect
of masses on each other, have been derived on the basis of a unified law.

And there is a footnote:

In this connection it is greatly to be desired that the question of whether Weber’s law
[Weber’s action-at-a-distance law of 1846 combined Coulomb’s law with Ampère’s law
for electric currents, and was later superseded by Maxwell’s field theory] is to be applied
to gravitation and also the question of the propagation velocity of gravitation should be
resolved.

At the end of the booklet B. Friedlaender even vaguely anticipates the incorpo-
ration of inertia and gravity into the properties of space and time (i.e., Einstein’s
principle of equivalence) by saying:

It is also readily seen that in accordance with our conception the motions of the bodies
of the Solar System can be regarded as pure inertial motions, whereas in accordance with
the usual conception the inertial motion, or rather its gravitationally continually modified
tendency strives to produce a rectilinear tangential motion.

Quite remarkably, I. Friedlaender also conceived and executed the first experi-
ment for the dragging of inertial frames by rotating masses: a heavy, rapidly rotating
fly-wheel with a torsion balance in line with its axis. Although a dragging of the
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torsion balance should be present here in principle, the effect is very many orders of
magnitude below measurability, even with modern techniques. [The remarkable and
innovative booklet (Friedlaender and Friedlaender 1896) seems to be the only lasting
contribution of these authors to the foundations of physics. Immanuel Friedlaender,
although he had a Ph.D. in physics, later became a famous vulcanologist, founding
and directing the world’s first institute for vulcanology in Naples, with a donation
to the ETH Zurich, existing until today. Benedict Friedlaender was a zoologist and
expert in the science of sexual reproduction.]

An independent and in principle more promising and more professional dragging
experiment was described in Föppl (1904a): the rotation of the whole Earth
should influence the axis of a gyroscope consisting of two heavy fly-wheels, a
primitive forerunner of the Stanford Gravity Probe B experiment (see Sect. 4.4).
Unfortunately, this experiment had only an accuracy of 2 % of the angular velocity
of the Earth, whereas we know today (see Sect. 4.4) that an accuracy of at least
10�9 of this angular velocity would be necessary for a positive effect. Mach reacted
positively to these experiments by Friedlaender and Föppl in later editions of his
mechanics book. In a related theoretical paper (Föppl 1904b), Föppl expresses the
opinion that the connection between the local inertial systems and the fixed stars
cannot be accidental. He focused on the Coriolis forces exerted by rotating masses
(in contrast to all other authors, who considered only the centrifugal forces), but
surprisingly he denied that these ‘velocity forces’ were a type of gravitational force.

The first paper by Einstein which explicitly addresses Machian questions, and
which also says that Mach’s mechanics book was a decisive motivation for some
of his own attempts, is obviously Einstein (1912). Although this paper contains
many new and interesting ideas and models (e.g., a spherical mass shell which
is still useful today in general relativity as a substitute for the Newtonian mass
point, the first calculation of a dragging effect in a relativistic gravity theory, and
the hypothesis of a mass increase due to surrounding heavy masses), most of the
details of this paper are (in retrospect) wrong. This begins with the title Is there
a gravitational action analogous to electromagnetic induction? Since the paper
Einstein (1912) is based on a scalar relativistic gravity theory, it can never produce
an action similar to the one resulting from the vectorial structure of electrodynamics.
Furthermore, even in the final version of general relativity, there exists (in the linear
approximation) a gravitomagnetic action analogous to Ampère’s law for electric
currents, but no action analogous to Faraday’s law of induction (see Sect. 4.4).

All the details of Einstein (1912) are based on Einstein’s ‘derivation’ of the mass
increase of a test massm due to the presence of a nearby heavy massM , e.g., in the
form of a mass shell. However, in general relativity it turned out, after numerous
controversial claims, that such a mass increase is only an untestable coordinate
effect (Brans 1962). Finally, in general relativity there does indeed exist a dragging
of test masses inside a linearly accelerated mass shell (massM , radiusR), but with a
dragging factor 4M=3R (Pfister et al. 2005), in contrast to Einstein’s result 3M=2R.

In June 1913, Einstein wrote a famous letter to Mach (see, e.g., Misner et al.
1973, pp. 544–545) in which he says: “It necessarily follows [in the so-called
Entwurf theory] that inertia has its origin in a type of interaction of the bodies,
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just as in your consideration concerning Newton’s experiment with the bucket.”
In Einstein (1913), again based on the Entwurf theory and on the Einstein–Besso
manuscript from June 1913 (Klein et al. 1995, pp. 344–473), Einstein particularly
stresses the idea that the relativity of inertia is a natural result of his theory. In this
tensorial theory he is now also able to calculate the dragging of test masses inside a
rotating mass shell, due to a Coriolis force, by analogy with the vector potential of
electric currents. Only the magnitude of this effect is smaller by a factor 1/2 than in
the final version of general relativity.

The expression ‘Mach’s principle’ appears first in the paper Einstein (1918) with
the words “The G-field [gravitational field] is completely determined by the masses
of the bodies”, and “according to the gravitational field equations no G-field is
possible without matter”. However, Einstein then observes that, even for T�� � 0,
a non-trivial G-field g�� = const. is possible for all �; �, e.g., the Minkowski
metric. He tries to remedy this ‘failure’ by adding a cosmological term �g�� to
the field equations (Einstein 1917). But shortly after this, deSitter proved (de Sitter
1917) that in this extended theory there are also non-trivial solutions for T�� � 0.
A complete determination of the gravitational field from a given distribution of
energy–momentum T�� is possible, if at all, only by supplementing a given T��
by appropriate, e.g., cosmological, boundary conditions. (Compare the remarks
concerning the solution manifold of the gravitational field equations in Sect. 3.1.)
A further, more fundamental critique on Einstein’s above formulation of Mach’s
principle comes from the following fact: in order for the specification of a tensor
T�� to make any sense, a metric g�� must already be given, i.e., the statement that
the matter by itself determines the metric is meaningless.

Somewhat later, in the Princeton lectures from May 1921, published in Einstein
(1922), Einstein comes back to such Machian questions in general relativity, and
here he is more explicit and more realistic. He says:

What has to be expected along the line of Mach’s thought?

1. The inertia of a body must increase when ponderable masses are piled up in its
neighborhood.

2. A body must experience an accelerating force when neighboring masses are accelerated,
and, in fact, the force must be in the same direction as the acceleration.

3. A rotating, hollow body must generate inside of itself a Coriolis field, which deflects
moving bodies in the sense of the rotation, and a radial centrifugal field as well.

We will now show that these three effects, to be expected according to Mach’s thoughts,
really have to be present in our theory [general relativity], although in so small magnitude
that a confirmation by laboratory experiments cannot be thought of.

We have already pointed out above that the first demand does not make sense,
but that the second and third demands are realized in general relativity. Somewhat
later in Einstein (1922), Einstein formulates concerning the above three points the
following: “We must see in them a strong support for Mach’s ideas as to the relativity
of all inertial actions”, but again he exaggerates in an illicit way:

If we think these ideas through consistently to their logical conclusion, we must expect
the whole inertia, i.e., the whole g�� field to be determined by the matter of the universe,
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and not mainly by the boundary conditions at infinity. [. . . ] Consistent with the Machian
thought is only a spatially closed (finite) world, and not a quasi-Euclidean infinite one.
Anyhow, it is intellectually more satisfying if the mechanical and metrical properties of
space are completely determined by the matter, something that is only realized in the case
of a spatially closed world.

In later years Einstein moved further and further away from the Mach principle,
and finally came to a complete repudiation of it, when he wrote in a letter to F. Pirani
in February 1954 (Pais 1982, p. 288): “As a matter of fact, one should no longer
speak of Mach’s principle at all.”

Here we shall take a more positive, but nevertheless realistic and practical
viewpoint concerning this principle. In contrast to, e.g., J. Barbour, we do not
see “general relativity as a perfectly Machian theory” (Barbour and Pfister 1995,
pp. 214–231). We see this principle rather as applying mainly to our actual universe,
or a reduced class of cosmological solutions (whether spatially closed or open) of
Einstein’s field equations, which agree with all observations. [Hereby we disregard
cosmological models like the Gödel solution (Gödel 1949) and the Ozsváth–
Schücking solution (Ozsváth and Schücking 1962).] And clearly Mach had only
such models in mind when he formulated his thoughts, and only Machian or anti-
Machian properties of such models have any chance of being tested experimentally.
In the next section, we will see that different types of models for the dragging
of inertial systems do indeed realize some of Mach’s ideas, and in Sect. 4.3 we
investigate how far the relation between local inertial systems and the frame defined
by the distant cosmic masses and the cosmic background radiation actually satisfies
Machian claims.

4.2 Dragging Phenomena in General Relativity

Historically, as shown in the last section, Einstein introduced first the model of
a spherical, thin mass shell as a substitute for all the matter in the universe to
calculate what are nowadays known as ‘dragging effects’ in the framework of a
scalar relativistic graviational theory and also the Entwurf theory, both of which
preceded the final version of general relativity. These effects refer to the influence
of accelerated masses on the local inertial frames, and in this respect they exhibit
‘Machian’ properties of Einstein’s theory of gravitation. Within these shell-type
models of ‘rotating skies’, one tries to reveal the true nature and origin of inertia,
and in particular to answer questions about the induction of Newtonian ‘fictitious’
forces, such as the Coriolis and centrifugal forces. Therefrom, it can be made
plausible that the motions of bodies, and especially rotation, should have only
relative meaning in physics, and that it should be impossible to decide, in principle,
whether an observer is rotating relative to the fixed stars, or all the distant stars
and galaxies in the universe are rotating relative to the observer. It is mainly this
aspect linked with the inertial structure of spacetime which we shall concentrate
on in connection with the whole, complex, and in part controversial subject of
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‘Mach’s principle’ [see Barbour and Pfister (1995) for a comprehensive survey],
and the extensive field of dragging phenomena in general relativity. We hope to give
a new synopsis of this theme, with this specific focus not entering most textbook
presentations on the foundations of gravitation and general relativity—and in a
way amend Ciufolini and Wheeler’s view on gravitation and inertia (Ciufolini and
Wheeler 1995).

In this section we follow the route from the classic papers of Thirring and
Lense of 1918 on these dragging phenomena (the so-called Lense–Thirring effect,
valid in the weak-field regime of gravity) to more elaborate generalizations to
strong gravitational fields and higher orders in the angular velocity ! of the
rotation of the shell (focusing especially on the so-called centrifugal force problem).
However, it has to be stressed that such dragging phenomena are not restricted
to (mainly stationary) rotational accelerations (i.e., effectively time-independent
systems), but also show up in the case of linearly accelerated bodies (i.e., in true
dynamical situations), resulting in the hypothesis of a ‘quasi-global equivalence
principle in general relativity’ between general acceleration fields and gravitational
fields. We add a few remarks on dragging properties of more realistic relativistic
configurations, namely rigidly rotating discs and equilibrium stellar models.

We conclude this section with more recent issues on the ‘electromagnetic
Thirring problem’: as stated above, the standard Thirring problem describes the
(nonlocal) influence of rotating masses on the inertial properties of spacetime,
especially the so-called dragging of inertial frames inside a rotating mass shell
relative to the asymptotic frames. It is then natural to ask whether and how
properties other than inertial ones are also influenced by rotating masses, and the
first (noninertial and nongravitational) properties which come to mind here are
surely electromagnetic phenomena. Since the coupled Einstein–Maxwell equations
are structurally not much more complicated than the pure Einstein equations
(see Sect. 4.4 in the linearized case), an extension of the Thirring problem to
electromagnetic phenomena is technically manageable. For instance, it can be
shown that a rotating mass shell induces (to first order in !) to a charge in its interior
a dipolar magnetic field, a further ‘Machian’ aspect of the relativity of rotation.

Einstein’s formulation of Mach’s principle as formulated in the Princeton lectures
of May 1921 (especially items 2 and 3, listed in the last section) established a
concrete program regarding the induction of ‘fictious forces’ in a relativistic theory
of gravity. The first attempt to calculate any such dragging effect within the final
version of general relativity, effects which had already been calculated by Einstein
(and Besso) in 1912–13 in the Entwurf theory (see the previous section), was made
by H. Thirring (and J. Lense), starting in April 1917 with an extensive notebook
entitled Effects of rotating masses (Thirring 1917) and finally culminating in the
two well-known papers of 1918 (Thirring 1918; Lense and Thirring 1918). For
Einstein’s 1913 model of an infinitely thin, spherical shell with mass M , radius
R, and angular velocity !, Thirring derived to first orders in M=R [i.e., in the
weak-field approximation of Einstein’s equations of 1916 (Einstein 1916)] and !
a Coriolis-type force with ‘dragging factor’ d1 D 4M=3R. To second order in !,
an additional force showed up which was treated by Thirring as a centrifugal force,
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although it also had an axial component and could not be made zero in the same
rotating frame in which the Coriolis-type force vanishes.

In detail, calculation of the geodesic equation for test masses with (small) mass
m, and with (small) velocity v inside and near the center (r � R) of the stationary
and slowly rotating mass shell exhibits a dragging acceleration field

a D �2d1.! � v/ � d2
�
! � .! � r/C 2.! � r/!

�
; (4.1)

with d1 D 4M=3R and d2 D 4M=15R (after the correction by Laue and Pauli in
1920, see Thirring 1921). Comparing (4.1) with (1.14) of Sect. 1.6 in the stationary
case (i.e., P! D 0 and no Euler forces) shows that the first term in (4.1) leads (except
for the factor d1, which is not generally equal to 1) to the Coriolis force of Newton’s
theory in a rotationally accelerated frame, viz.,

Fcor D �8mM
3R

! � v ;

and the second one to a kind of ‘centrifugal force’

Fcentr D �4mM
15R

�
! � .! � r/C 2.! � r/!

�
;

with an axial component � 2.! � r/! that does not occur in its Newtonian coun-
terpart and which also could not be explained in a satisfactory manner by Thirring.
(For an elimination of this erroneous additional component in the centrifugal force,
see below.)

But Thirring’s centrifugal force term suffers from another inconsistency: as
has been shown in Lanczos (1923), Thirring’s model of a shell made of dust
violates Einstein’s field equations, because, disregarding any stresses in the shell
material, the (pressureless) energy–momentum tensor is obviously not divergence
free. Therefore, it does not satisfy the local energy–momentum conservation law
T
��

I� D 0 to second order in !. (Physically, in order for the mass elements
of the shell to be able to rotate on spherical orbits, the centrifugal forces have
to be compensated for by appropriate stresses in the shell material.) More than
three decades later, Bass and Pirani (1955) partly repeated Lanczos’ arguments,
but presented them in more mathematical detail, and generalized Thirring’s model
to a latitude-dependent mass density of the shell. [At the same time, and obviously
independently, Hönl and Maue (1956) derived similar but less complete results.]

Another argument, calling for a treatment of the rotating mass shell at least
up to order M2 (or even exact in M in order to make Newton’s vessel and the
mass shell “several miles thick”, and therefore to account for a substantial part
of the whole universe), was presented in Soergel-Fabricius (1961). As already
discussed in Thirring (1918), it is possible to eliminate the Coriolis acceleration
inside the rotating mass shell by a transformation to an appropriately rotating
reference system, i.e., a frame rotating with an opposite angular velocity Q! D
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.�4M=3R/!. However, the centrifugal acceleration (�M2!2=R2) can vanish in
the same reference system, as it should according to Mach’s demand for a relativity
of rotation, at best if it is of order .M!=R/2r , rather than of order .M!=R/!r in
Thirring (1918).

For the exterior gravitational field of a slowly rotating spherical body, e.g., the
Earth or the Sun, Thirring and the mathematician Lense (Lense and Thirring 1918)
calculated the Coriolis acceleration acor for a test mass of velocity v for values
r=R � 1, i.e., in the far field of the rotating source:

acor D 2v � H ; with H.r/ D 2MR2

5r3

�
! � 3r

r2
.! � r/

�
; (4.2)

where H is what is now called the ‘gravitomagnetic’ dipole field (for the calculation
and experimental verification of H, see Sect. 4.4). More elegantly, it is already
clear from symmetry considerations that a first-order rotational perturbation of a
spherical system can only produce a pure dipole field proportional to r�3 (see also
the electromagnetic case below).

It is less well known that the Lense–Thirring papers owe nearly all their
physically interesting results and the correct calculations to a correspondence with
Einstein (Schulmann et al. 1998, Docs. 361, 369, 401, and 405) and Einstein’s talk
at the Vienna congress in 1913 (Einstein 1913), which Thirring attended. Einstein’s
decisive impact and contribution on the genesis of these results has been revealed
extensively in Pfister (2007, 2010). In order to be historically correct and fair
concerning the respective merits of Einstein, Thirring, and Lense in the discovery
of (4.2), which is now known as the Lense–Thirring effect, the conclusion is that it
should be called the Einstein–Thirring–Lense effect.

If one tries to reveal any influence of the cosmos on local physics in a Machian
view, one surely has to consider a cosmological setting, i.e., in particular to go
beyond weak gravitational fields, which are the basis for the above-mentioned
calculations. Further development of the work of Einstein and Thirring had to wait
almost 50 years until, in 1966, Brill and Cohen (1966) succeeded in extending
Thirring’s calculations to arbitrary values of M=R (but still only to first order in
the angular velocity of the shell) by considering a rotational perturbation, not of
Minkowski spacetime, but of the Schwarzschild solution. They derived (for the
whole flat interior of the shell) a Coriolis-type acceleration, with dragging factor
[compare with (4.1) and (B.17) of Appendix B]

d1 D 4M.4R �M/

.2RCM/.6R �M/
; (4.3)

where R denotes the shell radius in isotropic coordinates. (In Schwarzschild
coordinates the expression would be somewhat more involved.) In the weak-field
limit M=R � 1, this dragging factor coincides of course with Thirring’s result
d1 D 4M=3R. Their central new result was that, in the collapse limit M=2R ! 1

of the mass shell, the dragging factor d1 in (4.3) attains the value 1. Inertial systems
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inside the mass shell are dragged along with the full angular velocity ! of the shell.
In this limit, geometrically, the interior of the mass shell is cut off from the exterior
of the spacetime as a type of a separate ‘universe’, and one gets total dragging for
interior test particles and local inertial frames.

A spherical mass shell in the collapse limit is admittedly a rather simplified
cosmological model, and one may object that in this limit the shell material
has somewhat unphysical properties, e.g., the stresses diverge. The usual energy
conditions are already violated before the collapse, e.g., for R < 3M=4, the
dominant energy condition fails. Nevertheless, such a configuration may be regarded
as a not too unrealistic substitute for the cosmic mass distribution compared, e.g.,
with cylindrical mass shells. (For an extension to more realistic cosmological
spacetimes, see the next section.) This result confirms (at least partly) that for
physically reasonable models within general relativity, the Machian postulate of
the relativity of rotation is satisfied (to first order in !), so the classic work of Brill
and Cohen may be judged as the most important positive contribution to Mach’s
question so far.

An extension of the results of Brill and Cohen to higher orders in !, and in
particular the long-standing problem of the induction of a correct centrifugal force
by rotating masses had to wait for another 19 years to be solved in Pfister and Braun
(1985) (these calculations with some minor corrections are repeated in Appendix B).
The solution is based on two ‘new’ observations which could and should have
been made already in Thirring’s time, but which, for inexplicable reasons, were
overlooked by all authors before 1985 (see also Pfister 2007):

• Any physically realistic, rotating body will suffer a centrifugal deformation to
order !2 and higher, and cannot be expected to keep its spherical shape.

• If we aim and expect to realize quasi-Newtonian conditions with the ‘correct’
Coriolis and centrifugal forces (and no other forces!) in the interior of the rotating
mass shell, this interior obviously has to be a flat piece of spacetime. To first order
in !, this flatness is more or less trivial because the only non-Minkowskian metric
component gt' is constant there, i.e., we have a constantly rotating Minkowski
metric, and therefore a structurally correct Coriolis force. In contrast, to order!2,
this flatness is by no means trivial, and it is indeed violated for Thirring’s solution
due to the axial component of his ‘centrifugal force’. Moreover, if Thirring had
extended his calculations to orders!3; !4; : : :, he would have obtained additional
forces in the interior of the rotating mass shell, in conflict with Newtonian physics
in a (stationary) rotating reference system [see (1.14) of Sect. 1.6].

With these observations, the problem of the correct centrifugal force inside a rotating
mass shell boils down to the question of whether it is possible to connect a ‘rotating’
flat interior metric through a mass shell (with, to begin with, unknown geometrical
and material properties) to the non-flat but asymptotically flat exterior metric of a
rotating body. In full generality, this would represent a mathematically quite intricate
free boundary value problem for the stationary and axisymmetric Einstein equations.
However, if one confines oneself to a perturbation expansion in the angular velocity
!, all metric functions can be expanded in spherical harmonics, i.e., due to the axial
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symmetry, just in Legendre polynomials Pl.cos �/, where to order !n the index
l is limited by l 
 n. In this way, the Einstein equations reduce to a system of
ordinary linear differential equations for the functions f .i/

l .r/multiplyingPl.cos �/
(i D 1; : : : ; 4, for the four different metric coefficients describing the stationary,
axisymmetric spacetime in the exterior of the mass shell).

In summary, by allowing for a nonspherical form of the rotating mass shell,
for a nonspherical (latitude-dependent) mass distribution on it, and for differential
rotation, it was shown in Pfister and Braun (1985, 1986) that, for given parameters
M , R, and !R � 1, there exists exactly one quasi-spherical rotating mass shell
(as a unique solution to the above-mentioned stationary and axisymmetric system
of Einstein’s equations) which induces flat geometry in its whole interior to all
orders !n, and therefore correct Coriolis and centrifugal forces with no additional
spurious forces. In short, there exists a finite region of spacetime with the ‘correct’
inertial structure known from Newtonian physics. Only in the collapse limit is the
rotating shell with flat interior spherical and rigidly rotating, and it produces the Kerr
geometry in the exterior, as was already deduced in De La Cruz and Israel (1968).
For a mass shell which deviates from sphericity, even to zeroth order in !, there
is no solution with flat interior (Pfister 1989). From this one may conclude with
Pfister and Braun (1985) regarding the long-standing centrifugal force problem:

In this way, Mach’s ideas on the relativity of rotation (not the whole so-called Mach
principle, as stated by Einstein (1918)!) are materialised in general relativity as completely
as one could ever hope within the model of a shell-type sky.

Historically, the first dragging effect, investigated within a preliminary scalar
relativistic graviational theory, was of translational origin: for a test mass inside a
linearly accelerated mass shell with acceleration  , massM , and radiusR, Einstein
deduced two effects in 1912 (Einstein 1912). First, an increase in the inertial mass
by a factor 1 C GM=Rc2 (see item 1 in Sect. 4.1), and second, a linear dragging
of test bodies inside the shell with the ratio dlinear D �= D 3GM=2Rc2. [The
dragging by a linearly accelerated mass shell is calculated in the framework of the
Entwurf theory in the Einstein–Besso manuscript (June 1913) on the motion of the
perihelion of Mercury (Klein et al. 1995, pp. 436–437).] It is then natural to ask
whether and how all the dragging effects in general relativity derived for rotating
mass shells carry over from a rotational acceleration to a linear acceleration, as
initiated by Einstein.

A quite general and severe problem with linearly accelerated bodies is that they
need, in contrast to rotating bodies, a perpetual supply of energy in order to maintain
the acceleration. And since in general relativity the equations of motion of bodies
are already contained in the field equations (see Sect. 3.2), the energy source (or the
‘motor’ of the accelerated system) has to be included in the considered system in
order to obtain a self-consistent problem. This difficulty may be the reason why,
besides the historical Einstein paper (Einstein 1912), only a few articles (Farhoosh
and Zimmermann 1980; Gron and Eriksen 1980; Lynden-Bell et al. 1999) have yet
treated (or claimed to treat) dragging effects due to linearly accelerated masses. And
even these papers compare only rather poorly with the rotating systems considered
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in Thirring (1918), Brill and Cohen (1966), Pfister and Braun (1985) because
they treat only the weak-field case or contain special relations between mass M
and charge q of the shell. Furthermore, in some of these papers the source of
acceleration is not really fixed, or is removed to infinity, with the consequence
that the equations of motion are in danger of being violated. And in none of these
models is it guaranteed that the geometry inside the shell is flat, so that the putative
dragging effects cannot be clearly distinguished from local gravitational effects due
to curvature.

To overcome all these difficulties and pitfalls, a spherical Reissner–Nordström
shell of nearly arbitrary massM , charge q, and radiusR was considered in Pfister et
al. (2005), and a (first-order) translational acceleration of this shell was calculated,
the source of this linear acceleration being a (weak) momentarily static, dipolar
charge distribution 
.r/ outside the shell. The coupled Einstein–Maxwell equations
in the electro-vacuum regions have a flat solution inside the shell, and for an
appropriate asymptotic fall-off behavior of 
.r/, the solution is also asymptotically
flat (as in the rotational examples considered so far). Three main results could be
inferred from this model system. First, within the weak-field regimeM=R � 1, and
q=R � 1, one finds that, for the simplest power law charge distribution 
.r/ � r�5
having a finite dipole moment, the dragging factor inside the shell, calculated from
the geodesic equation for neutral test particles in this region, coincides (by accident)
with Thirring’s value 4M=3R. Second, for a shell with arbitrary mass but small
charge, one finds that, for 
.r/ � r�5, the dragging factor dlinear has a similar
dependence onM=R as for the rotating mass shell in Brill and Cohen (1966). Third,
in the important collapse limit 2M=R ! 1, one once again obtains dlinear ! 1, i.e.,
total dragging, and this for arbitrary charge distributions 
.r/.

In summary, it seems to be evident that, for ‘small’ (first-order) linear and
rotational accelerations of a mass shell, the interior of this shell can be kept flat,
and that the dragging effects in this shell exactly mimic the corresponding well-
known ‘inertial forces’ in accelerated reference systems in Newtonian physics.
Since general accelerations can (in principle) be combined from appropriate linear
and circular accelerations, this gives very good arguments for the validity of a quasi-
global equivalence principle in general relativity, a hypothesis first formulated in
Pfister and Braun (1985):

If some finite laboratory (a flat region in spacetime) is in arbitrary (weak) accelerated
motion relative to the fixed stars, then all motions of free particles and all physical laws,
measured from laboratory axes, are modified by inertial forces. It is argued that exactly the
same modified motions and laws can be induced (at least for some time) at all places in a
laboratory at rest relative to the fixed stars, by suitable and suitably moving masses outside
the laboratory (e.g., in a mass shell).

In short, this hypothesis may be phrased as follows (Pfister 2014): “Every
acceleration field can be understood as a gravitational field.” In this connection it
may be remarked that, even at the dawn of general relativity, in the years 1912–
1913, similar ideas arose in discussions between Einstein and Ehrenfest (Klein et
al. 1993, Docs. 409 and 411) and between Einstein and Mie (Einstein 1913). But at
that time the participants were quite sceptical about such a ‘macro-equivalence’.
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The delta-type shell structure of the models looked at so far may be criticized
as being rather unrealistic, in particular compared with isolated bodies in nature
like stars and galaxies. However, there are also quite general results for the dragging
behavior of isolated equilibrium stellar models with differential rotation, and rigidly
rotating disk solutions. In general, for stationary axisymmetric and asymptotically
flat solutions of Einstein’s equations (with two Killing vectors �� D @t and
�� D @� ), the dragging of inertial frames, as seen by asymptotic observers, is
prescribed by a time-independent gravitational potential A.�; z/ D �����=����.
Continuing along the lines of earlier work in Hansen and Winicour (1975, 1977)
and in Lindblom (1978) on rotating star configurations, it was shown in Pareja
(2004a,b) that, if the distribution of the angular velocity of the fluid is non-negative,
i.e., ! � 0 (and nontrivially, ! 6� 0), then the dragging rate is positive everywhere,
i.e.,A > 0, so it has the same sign. On the other hand, for quite general differentially
rotating stellar models satisfying the weak energy condition, the dragging rate is
always less than the fluid’s angular velocity, and hence the star has a positive angular
momentum.

Rigidly rotating dust disks are degenerate limiting cases of fluid bodies of
vanishing pressure and serve as more or less realistic models for certain galaxies and
accretion disks. Such disk-shaped matter distributions are one of the few examples
of explicit solutions of Einstein’s equations being exact in the angular velocity of
the rotation (like the Kerr–Newman black hole solutions mentioned in Sect. 3.3).
We refer here to the dust disk of Neugebauer and Meinel (1994) and the stationary
counterrotating dust disks of Klein (2001), the latter solution being in a sense
a generalization of the Poisson integral to the relativistic case. Concerning their
detailed dragging behavior (Meinel and Kleinwächter 1995; Frauendiener and Klein
2001) both disks, like the mass shells mentioned above in the collapse limit, show
complete dragging (viewed from the asymptotic regime) in the ‘ultrarelativistic
limit’, i.e., in the limit where the redshift diverges.

However, dragging phenomena, these non-Newtonian predictions of general
relativity considered so far, are not restricted strictly to gravity. Mach’s demand
on the relativity of rotation exhibits some further, electromagnetic aspects, viz., the
so-called electromagnetic Thirring problems, a phrase coined by Ehlers and Rindler
in the papers Ehlers and Rindler (1970, 1971). Such problems try to answer the
question as to whether and how properties other than inertial ones, and in particular
electromagnetic properties, are also influenced by rotating masses. This is all the
more important in that electromagnetism is, besides gravity, the second fundamental
classical interaction in nature. In the words of Rindler (1969, p. 16):

By its denial of AS [absolute space], Mach’s principle actually implies that not only gravity
but all physics should be formulated without reference to preferred inertial frames. It
advocates nothing less than the total relativity of physics. As a result, it even implies
interactions between inertia and electromagnetism. Consider, for example, a positively
charged, nonconducting sphere which rotates. Each charge on it gives rise to a circular
current and thus to a magnetic field. [: : :] By analogy again, a minute magnetic field should
arise within any massive rotating shell with stationary charges inside it.
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This conjecture of a gravitationally induced magnetic (dipole) field was first
considered by Hofmann (1962) and later on by Cohen (1966). The influence of a
rotating mass shell on electromagnetic phenomena, especially on charges sitting
inside the mass shell, is usually considered within a general class of two-shell
systems (see Ehlers and Rindler 1970, 1971; King and Pfister 2001): a charged
shell with radius a > 0 (in order to avoid singularities of the electrostatic energy
of the Coulomb field due to point charges) within a mass shell with radius R > a

is discussed in different approximations of mass M , charge q, and usually to first
order in the angular velocities !a and !R of the two (inner and outer) concentric
shells, resulting in stationary and axisymmetric charge and mass distributions
(and therefore in time-independent gravitational and electromagnetic fields of the
coupled Einstein–Maxwell equations). Mathematically, this problem amounts to
first-order rotational (dipole) perturbations of three matched Reissner–Nordström
metrics in the inner, intermediate, and outer regions of the two-shell system.

Now, Hofmann (1962) considered a charged shell within a rotating mass shell
with radius R to first order in the mass M , charge q, and angular velocity !, and
obtained, as one would expect on Machian grounds, a magnetic dipole field induced
by the rotating mass shell. For r < R, this field is constant along the axis of rotation,
and for r > R it falls off asymptotically as r�3. Later on, Cohen (1966) considered
a similar system exactly in M and to first order in q (i.e., there is no back-reaction
of the charges on the spacetime geometry), but now with an angular velocity for
the inner, charged shell. As a result of the electromagnetic test field approximation
used here, the whole space inside the mass shell always stays flat (as in the pure
gravitational Thirring problem), and in this way allows for a Mach-equivalent
situation in non-relativistic physics. Only in this special case can one expect, if at all,
to see close analogies with results from classical electrodynamics. Mathematically,
this has the simplifying consequence that gravitational and electromagnetic effects
decouple, and one has to solve only the Maxwell equations on a rotationally
disturbed Schwarzschild background to first order in the angular velocity !. As the
mass shell approaches its collapse limit, and can again be considered as an idealized
substitute for the overall masses in our universe, Cohen gets the completely Machian
result that:

[: : :] one cannot distinguish (even with electromagnetic fields reaching beyond the mass
shell) whether the charged shell is rotating or the mass shell is rotating in the opposite
direction.

The constant magnetic field inside the charged shell has the following component
in the direction of the axis of rotation (in isotropic Reissner–Nordström coordi-
nates):

Bz D 8q

3a
.!a � !R/

�
1 �

	 a
R


3�
: (4.4)

Here, an overbar indicates the time dilatation between an inner and an outer
observer, i.e., the relative angular velocity !a � !R between the bulk of the matter
of the universe and the charged shell is measured with respect to the interior proper
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time. As a consequence, a finite angular velocity, as seen from an observer inside the
mass shell, appears to be infinitely slowed down by an asymptotic observer outside
the shell. As discussed in King and Pfister (2001) within a more comprehensive
class of charged two-shell systems comprising all the model systems and their
approximations considered hitherto as special cases, the magnetic field in (4.4)
has a ‘cosmological correction term’. [The calculations in King and Pfister (2001)
are exact in M and q, the inner shell has no rest mass density, and in particular,
rotation is defined by the independent angular momenta Ja and JR of the two shells,
rather than their angular velocities !a and !R , which are in fact dependent due to
the dragging phenomena.] Here, one may interpret the radius R as a measure of
‘cosmic’ distances (a kind of ‘world radius’) and the radius a as a measure for
terrestrial or laboratory length scales.

In this way, the simplified cosmological model of a collapsed mass shell exhibits
an influence of the universe on our local physics (the magnetic field). However, the
relative difference between curved and flat space results is, for good or bad, in all
conceivable cases beyond measurability (approximately smaller than 10�57 if the
radius a equals the radius of the Earth). Hence, in the usual Schwarzschild-like
coordinate �, (4.4) gives the perfectly Machian result that the magnetic field with
respect to an inertial observer corotating with the mass shell and well inside (i.e., for
all length scales � � R) is exactly the magnetic dipole field of a rotating charged
shell as known from classical electrodynamics [together with the corresponding
component B#.�; #/ from flat spacetime electrodynamics]:

B�.�; #/ D

8̂
ˆ̂<
ˆ̂̂:

2qa2

3�3
. N!a � N!R/ cos# for a 
 � � R ;

2q

3a
. N!a � N!R/ cos# for � 
 a :

(4.5)

To first order inM and q, the magnetic fields already found using different methods
by Ehlers and Rindler in Ehlers and Rindler (1970, 1971) on the basis of the
conjecture made by Rindler were successfully confirmed in King and Pfister (2001)
and shown to be in full agreement with Machian expectations. (In contrast, Ehlers
and Rindler have referred to this field as ‘Mach-negative or, at best, Mach-neutral’.)

Highly charged two-shell systems display two quite unusual dragging phe-
nomena (King and Pfister 2001). First, as already mentioned, for a Machian
interpretation of the dragging effects, the exterior mass shell is often seen as an
idealized substitute for part or all of the cosmic masses. For this interpretation to
be valid, a minimal condition seems to be that the energy–momentum tensor of
this mass shell should satisfy the weak energy condition. If these conditions are
violated for some region of the parameter space .a;R; q;M/ of the system, this
leads to an ‘antidragging’ phenomenon: the local inertial frames are dragged in the
opposite direction to the rotation of the mass shell. In a trivial manner, antidragging
already manifests itself for the uncharged, weakly massive Thirring model in the
case of a negative shell mass: d1 D 4M=3R < 0 for M < 0. The interpretation
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of this anomalous change of sign of the dragging is as follows: the charged shell
in the model has zero mass density and negative ‘pressure’ (in order to balance
the Coulomb repulsion), and therefore nearly violates all energy conditions. It was
shown in Pfister and King (2002) that such a shell produces a negative dragging term
if it rotates. (The angular momentum Ja of the inner, charged shell may become
negative, although !a is positive! This again demonstrates that it is the intrinsic
angular momentum which causes dragging phenomena, see also Sect. 4.4.)

Second, in the region between the two shells one finds a radially increasing
dragging function. Such behavior is at first sight barely comprehensible, as typi-
cally the gravitomagnetic field outside a rotating body falls off as r�3 [compare
with (4.2)]. The explanation seems to come from the (positive and nonrotating)
electrostatic energy density. Quite generally, the degree of dragging is determined, at
least qualitatively, by the ratio between the rotating and the nonrotating mass energy
of the whole system (e.g., in the standard Thirring problem, the part of the cosmic
masses sitting on a rotating mass shell). If then (for fixed M ) a small part of the
(rotating) exterior shell is ‘replaced’ by electrostatic energy, the constant dragging
inside the charged shell is reduced. For a fixed value of the radial coordinate r > a,
the corresponding part of the electrostatic energy density has only a reduced effect
because, as stated above, the dragging due to masses quite generally falls off as
r�3 in their exterior. Therefore, the dragging function increases in the intermediate
region a < r < R. Furthermore, in the collapse limit of the massive highly charged
two-shell system, the important result in Brill and Cohen (1966) that in this limit
there results complete dragging of the inertial frames inside the mass shell, extends
to the inertial frames inside the mass shell of an electromagnetic Thirring system.
One may further conjecture that such perfect dragging is ‘universal’ in the collapse
limit, i.e., irrespective of all physical fields inside the (slowly) rotating mass shell.
(In the exterior region of the system one finds, as expected, the Kerr–Newman field
to first order in !.)

4.3 Realization of Machian Ideas in Cosmology
and in Nature

The dragging phenomena described in Sect. 4.2 confirm that Mach’s concept of
relativity of inertia, in particular relativity of rotation, is valid in general relativity,
at least to some degree, e.g., for small rotation rates. However, since none of
the models described hitherto are of a cosmological character, but are based on
asymptotically flat spacetimes, they do not, at least not directly, contribute to Mach’s
hypothesis that inertia is governed by the overall mass distribution in the universe.
Before coming to some real cosmological generalizations of the asymptotically flat
models, we shall nevertheless argue that these models already display some features
which are of interest from a cosmological point of view, and which are at least in
qualitative agreement with Mach’s hypothesis.
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As a first example, we recall the model of a slowly rotating, but heavy mass shell
in Brill and Cohen (1966), especially Fig. 2, where it was shown that, in the collapse
limit, the interior of the mass shell splits off as a separate ‘universe’ in which:

[. . . ] there cannot be a rotation of the local inertial frame in the center relative to the large
masses in the universe. In this sense our result explains why the ‘fixed stars’ are indeed
fixed in our inertial frame, and in this sense the result is consistent with Mach’s principle.

In the subsequent paper (Cohen and Brill 1968), several concentric mass shells
with masses mi , radii ri , and angular velocities !i are considered, each causing
a dragging effect 4mi!i=3ri at the center. If one now imagines a homogeneous
universe consisting of such successive mass shells, all rotating with the same (small)
angular velocity !, then at least in the weak-field approximation, the dragging
effects of all shells will superpose linearly, and for a constant mass density of the
universe the massesmi will grow quadratically with ri . Therefore the contribution of
each shell to the overall dragging effect at the center grows linearly with the radius,
thereby confirming Mach’s conjecture that (Mach 1872) “the share of the nearest
masses vanishes in comparison with that of the farthest” (compare Sect. 4.1).

A very interesting and quite important question concerning dragging effects in
general relativity and cosmology was first studied in a concrete model in Lindblom
and Brill (1974), namely the question of whether inertial effects are instantaneous
or retarded. The model system was the free-fall collapse of a slowly rotating dust
shell. And the result of a relatively simple calculation was that:

[the dragging function] ˝obs.t / is determined by the ‘instantaneous’ radius of the shell
R.t/. That is, as seen from infinity, the inertial frames within the shell rigidly rotate at the
angular velocity ˝obs: there are no retardation effects between the shell and the inertia of a
gyroscope at its center. This of course does not contradict any physical causality principle,
since ˝� can be considered to be merely the angular velocity of a coordinate system for
the interior flat region. However, it is this coordinate system which is most directly related
to effects observable from infinity, as explained above. Thus another view, more closely
related to Machian ideas, is equally consistent, in which ˝�.t / is observable but highly
nonlocal, so that a local causality principle does not apply to it. [. . . ] These results fit most
simply with the ‘spacelike’ formulation of Mach’s principle. [. . . ] The constraint equations
determining N and N i are purely spacelike equations, and in this sense all Machian effects
will be related to the instantaneous values of the dynamical variables.

This view was already anticipated, at least qualitatively, in Wheeler (1964,
p. 367):

The influence of a local increment •�; •si on the shift function Ni is nonlocal. It shows up
in the formalism neither as a retarded effect nor as an advanced effect. Instead, because the
analysis deals with an everywhere spacelike hypersurface, the influence appears ostensibly
as instantaneous.

Below we will document that quite generally, and also in a real cosmological set-
ting, Mach’s principle is connected with the time-independent constraint equations
of general relativity.

Now we come to attempts to calculate rotational dragging effects in models
which replace the asymptotic flatness by more or less realistic cosmological
asymptotic or boundary conditions. As far as we are aware, the first such attempt is
Lewis (1980). This work starts from the so-called Einstein–Straus vacuole (Einstein
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and Straus 1945), where a flat interior Minkowski region is continuously connected
via a coexpanding spherical mass shell to a spatially closed (k D 1) Friedmann
dust solution. Axially symmetric perturbations superimposed on this model were
calculated in Lewis (1980) to first order in the angular velocity, leading to a dragging
factor for the interior inertial frames which depends on the properties of the shell,
on the cosmic matter, and on the cosmic time, and “tends to confirm the spirit of
Mach’s principle, if not the exact definition.”

Similarly, in Chamorro (1988), it is pointed out that the slowly rotating mass
shells in an asymptotically flat spacetime are ‘cosmologizable’, and here for all three
cases of closed, open, and critically open universes (k D 1;�1; 0), but without
taking into account the work (Lewis 1980), and without discussing the Machian
aspects in any detail. These aspects are then carefully analyzed in Klein (1993), with
an invariant definition of the dragging factor by observable quantities (according to
Lindblom and Brill 1974), and with a discussion of the relative contributions of the
rotating mass shell and the rotating cosmic dust to the overall dragging effect inside
the shell. It is also proven there that, in these models, the shell mass exactly equals
the mass ‘cut out’ from the Friedmann universe.

In Lynden-Bell et al. (1995), the authors also begin with Machian effects in
slowly rotating mass shells, but then go over to rotational perturbations of closed
Friedmann–Robertson–Walker (FRW) cosmologies, and derive an explicit expres-
sion for the dragging potential !.r; t/ as an integral over the angular momentum
distribution J.
 r; t/ of the cosmic matter, with an appropriate weight function.
And, as announced above, in this general setting, they also come to the conclusion
that “the potential !.r; t/ that governs the rotations of the local inertial frames
is instantaneously related to the angular momentum distribution J.
 r; t/”, and
“that Mach’s principle follows from the constraint equations of general relativity,
provided that the universe is closed.” Besides the detailed mathematical proof of
these facts in Lynden-Bell et al. (1995), a simpler and more convincing argument
for the instantaneous action of inertia is provided in Katz et al. (1998). A first order
rotational perturbation of spherical FRW universes is of purely dipolar character.
But general relativity, as a tensorial field theory, does not allow for dipolar causal
signals (waves). [This is in contrast to the vectorial theory electrodynamics, as
worked out in detail in Katz et al. (1998).] The paper (Lynden-Bell et al. 1995)
also contains a simple proof that the angular momentum of any closed universe is
necessarily zero (compare also King 1995).

Similar but partly different results have been derived by C. Schmid in a short
paper (Schmid 2002), and in two quite extended papers (Schmid 2006) for (k D
0) FRW cosmologies, and Schmid (2009) for (k D ˙1) FRW cosmologies.
Application of the quite general cosmological perturbation formalism of Bardeen
(1980) to rotational perturbations leads to the following essential results (Schmid
2002):

1. The dragging of a gyroscope axis by rotational perturbations beyond the PH radius (H =
Hubble constant) is exponentially suppressed.
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2. If the perturbation is a homogeneous rotation inside a radius significantly greater than
the PH radius, then the dragging of the gyroscope axis by the rotational perturbations is
exact for any equation of state for cosmological matter.

3. The time evolution of a gyroscope axis exactly follows a specific average of the matter
inside the PH radius for any equation of state.

In this precise sense Mach’s principle follows from cosmology with Einstein gravity.

Concerning the first item, it should be noted that this conclusion has been
questioned in Bičák et al. (2004): the exponential suppression is only present if
the angular velocities of the cosmic matter are prescribed. But it would seem
more appropriate to prescribe the angular momenta, for which a conservation law
is valid. [Similar conclusions have been drawn for the so-called ‘electromagnetic
Thirring problem’ in King and Pfister (2001).] However, this controversy does not
affect the central message of all these papers that rotational perturbations of FRW
cosmologies confirm Mach’s principle as far as one might wish. In view of the
recent observational results (mainly due to the structure of the cosmic background
radiation) that our actual universe demands dark matter, or a cosmological constant
�, it may be instructive to investigate how far the above results concerning Mach’s
principle generalize to cosmologies with a � term.

After this theoretical analysis concerning the realization of Machian ideas
in cosmology, we address the question as to whether, and how precisely, the
experimentally realized local inertial axes are tied to the overall mass distribution
of the universe, i.e., how well Mach’s principle works in nature. In a rough and
qualitative manner, such a relation was already known to Galileo, Kepler, Newton,
and others, and in 1851, L. Foucault demonstrated that a freely suspended pendulum
maintains its plane of oscillation with respect to the ‘rest system’ of the universe
during a 24 h revolution of the Earth. The first concrete estimate we have found in
the literature for the degree of ‘non-rotation’ of the local inertial systems against the
‘fixed stars’ is due to Seeliger (1906), who states “that the practically used empirical
astronomical coordinate system does not rotate relative to an inertial system by more
than a few arcseconds in a century”. From today’s perspective one can, however,
have doubts as to whether such accuracy was really possible more than 100 years
ago.

Nowadays, laser gyros presumably represent the most precise, truly local rotation
sensors, and these reach an accuracy of (only) 10�8!E of the Earth’s angular velocity
(Stedman 1997; Schreiber et al. 2008). Obviously, the best rotation sensors today
are given by the (less local) Earth-based reference systems of VLBI (Very Long
Baseline Interferometers) and the GPS (Global Positioning System), for which
the accuracy reaches 10�9!E (Kovalevsky et al. 1989). For the dynamical solar
reference system, with respect to which the planetary orbits are optimally adjusted
to Newton’s laws and its well-known relativistic corrections, the precision is
5�10�9!E (Kovalevsky et al. 1989). For the galactic reference frame, realized by the
HIPPARCOS catalogue (HIgh Precision PARalax COllecting Satellite), the estimate
is 7 � 10�8!E (Kovalevsky et al. 1997). This number can presumably be improved
by a factor of 100 by the GAIA satellite (Global Astrometric Interferometer for
Astrophysics), which was launched on 9 December 2013, and which will map 109
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stars of the Milky Way over 5 years with a precision of 7 � 10�6 arcsec. None of
these experiments have found any deviation from the hypothesis that the (quasi-)
local inertial systems are fixed relative to the distant stars and galaxies, and the
cosmic background radiation. A number which does not directly measure the (non-)
rotation of a local inertial system against the cosmos, but which is nevertheless
of interest in this connection, is the vorticity strength of the cosmic background
radiation, which is estimated (Kogut et al. 1997) by !=H0 < 6�10�8, i.e., less than
10�7 ‘revolutions’ during the whole lifetime of the universe.

We close this section with some wonderful, somewhat provocative quotations
from prominent experts, addressing this ‘miraculous’ connection between local
physics and the universe as a whole. (As far as we are aware, the only other such
connection results from the ‘initial’ state—of very low entropy—of the universe,
which presumably triggers the time arrow of all our local irreversible processes.) In
the textbook Misner et al. (1973, p. 547), we read:

Consider a bit of solid ground near the geographic pole, and a support erected there, and
from it hanging a pendulum. Though the sky is cloudy, the observer watches the track of
the Foucault pendulum as it slowly turns through 360ı . Then the sky clears and, miracle of
miracles, the pendulum is found to be swinging all the time on an arc fixed relative to the
far-away stars.

S. Weinberg expresses a similar thought experiment in Weinberg (1972, p. 17):

There is a simple experiment that anyone can perform on a starry night, to clarify the
issues raised by Mach’s principle. First stand still, and let your arms hang loose at your
sides. Observe that the stars are more or less unmoving, and that your arms hang more or
less straight down. Then pirouette. The stars will seem to rotate around the zenith, and at
the same time your arms will be drawn upward by centrifugal force. It would surely be a
remarkable coincidence if the inertial frame, in which your arms hung freely, just happened
to be the reference frame in which typical stars are at rest, unless there were some interaction
between the stars and you that determine your inertial frame.

And S. Hawking writes in Hawking (1969) (reproduced in Misner et al. 1973,
p. 938):

The observed isotropy of the microwave background indicates that the universe is rotating
very little if at all. [. . . ] This could possibly be regarded as an experimental verification of
Mach’s principle.

Finally, we hint at a quite alternative quotation from Schücking (1996) which
concerns a linear acceleration, and makes it particularly clear that Machian effects
are governed by the time-independent constraint equations of general relativity
(because the cosmic masses can never react causally to the sudden decision of the
car driver to slam on the brakes):

Mach’s principles—whatever they may be—will always find their defenders and believers.
When one of its promoters, Dennis Sciama, slammed on the brakes of his car, propelling his
girlfriend, seated next to him, towards the windshield, she was said to be heard moaning,
‘All those distant galaxies’.
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4.4 Gravitomagnetism and Its Observational Basis

In the preceding sections, we have given a detailed summary of the general
‘dragging of inertial frames’ or ‘frame-dragging’, its history, and its Machian
interpretation, and of the origin of inertia: in Einstein’s theory of general relativity,
not only mass-energy but especially mass-energy currents create curvature and
influence spacetime structure. Although the cosmic masses and their motions may
not entirely determine the local inertial structure of spacetime, they at least influence
it in a way that is explicable in the spirit of Mach. As Ciufolini and Wheeler very
vividly put it in a nutshell (Ciufolini and Wheeler 1995, pp. 4 and 399):

Inertia here, in the sense of local inertial frames, that is the grip of spacetime here on mass
here, is fully defined by the geometry, the curvature, the structure of spacetime here. The
geometry here, however, has to fit smoothly to the geometry of the immediate surroundings;
those domains, onto their surroundings; and so on, all the way around the great curve of
space. Moreover, the geometry in each local region responds in its curvature to the mass in
that region. Therefore every bit of momentum–energy, wherever located, makes its influence
felt on the geometry of space throughout the whole universe—and felt, thus, on inertia right
here.

And put simply:

In conclusion we may summarize: mass-energy ‘tells’ spacetime how to curve and
spacetime ‘tells’ mass-energy how to move. [. . . ] Therefore, mass-energy there rules inertia
(local inertial frames) here.

In general, all ten components of the energy–momentum tensor T�� create
curvature and influence the spacetime structure. Gravitation, at least in Einstein’s
general relativity formulation, is a tensor theory, so the mass density is not the only
source of gravitational fields. For all physical systems which have a global time
coordinate, as is true, e.g., for standard cosmological models and for stationary and
asymptotically flat systems, there exists a well defined separation of the energy–
momentum tensor T �� into the energy density T 00, the momentum density T 0i , and
the stress tensor T ik . In the linear (weak-field) approximation to general relativity,
these different sources produce accompanying, well separated gravitational fields.

It has been known for a long time (see below) that the gravitational fields
produced by T 00 and T 0i exhibit a close analogy to electromagnetic fields, and
therefore the names ‘gravitoelectric fields’ (produced by T 00) and ‘gravitomagnetic
fields’ (produced by T 0i ) are appropriate (see, e.g., Harris 1991). The latter lead to
a phenomenon called gravitomagnetism, a new type of gravitational field or ‘force’,
totally unknown in Newton’s theory. (However, in contrast to electromagnetism,
pure gravitomagnetic fields do not exist due to the lack of gravitationally neutral
matter.) The fields produced by T ik , and which could be called ‘gravitotensorial
fields’, would not appear to have been studied in the same systematic manner
(Pfister and Schedel 1987). In the full nonlinear theory of general relativity, the
effects of the different sources T 00, T 0i , T ik are of course mixed, so that a general
gravitational field can no longer, even in a fixed coordinate system, be clearly
separated into gravitoelectric, gravitomagnetic, and gravitotensorial components.
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(In this connection there emerges the interesting question of a possible reduction
or even compensation of gravitational attraction through gravitomagnetic effects.
Some relativistic models with momentum density T 0i and stresses T ik of magnitude
comparable to T 00 are presented below.)

In this section, we first examine gravitomagnetism—or gravitoelectromagnetism
(GEM)—on the basis of the linearized Einstein field equations and in close analogy
with Maxwell’s equations of classical electrodynamics. We then briefly characterize
this field intrinsically by its spacetime invariants, and finally comment on the
experimental situation.

Historically, the basic equations of (linear) gravitomagnetism were already
derived in 1918 by H. Thirring in Thirring (1918). A vague idea of a new
gravitomagnetic ‘force’ already appears in 1896 in a booklet by the Friedlaender
brothers in Friedlaender and Friedlaender (1896), and then in the title of an Einstein
paper from 1912 (Einstein 1912). More concretely, relativistic field equations
for gravitomagnetism appear first in Einstein’s talk at the Naturforscher congress
1913 in Vienna (Einstein 1913), based on the preliminary Entwurf theory, where
Einstein explicitly says: “The [gravitational] equations correspond largely to those
of electrodynamics, [: : :] up to the sign, and [: : :] up to a factor 1=2.” Thirring was
without doubt decisively stimulated by this talk which he quotes in the introduction
to his paper. And he explicitly mentions the different sign and a factor 4 in his
gravitomagnetic equations in comparison to electromagnetism [as Einstein did in
his talk (Einstein 1913)]. Although he presents no physical interpretation of these
differences, it was no doubt clear to him that the different sign comes from the fact
that all (positive!) masses attract each other, whereas charges of equal sign repel
each other. Not so evident is whether Thirring was aware of the fact that the factor
4 results from the tensorial character (spin 2) of general relativity, in contrast to the
vectorial theory electrodynamics (spin 1 of the photons).

Now, the field equations, derived from a linear perturbation of Minkowski space-
time given by g�� D ��� C h�� with jh�� j � 1, where ��� is the flat Minkowski
(background) metric, and subject to certain ‘simplifying’ gauge conditions, are the
following (groups of homogeneous and inhomogenous) Maxwell-type equations [in
a notation adapted from Harris (1991) and Ohanian and Ruffini (2013)]:

r � H D 0 ; (4.6)

r � g D 0 ; (4.7)

r � g D �4�.2T 00 � T / ; (4.8)

.r � H /i D �16�T 0i ; (4.9)

where H is the ‘gravitomagnetic field’ and g is the standard Newtonian gravitational
or ‘gravitoelectric’ field. Likewise, the source term 2T 00 � T in (4.8) may analo-
gously be called the ‘gravitational charge density’, and the source term T 0i in (4.9)
the ‘gravitational current density’. (Hence, in the case of an energy–momentum
tensor of, e.g., a perfect fluid, there are also contributions to g due to the pressure.)
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For stressless matter (so-called dust), these source terms reduce to the mass energy
density %m and the mass current density jm D %mv.

The gravitational fields are related to the respective potentials by H D r � h,
where the so-called gravitomagnetic potential h D .h01; h02; h03/ is the off-
diagonal .0i/-component of the metric, and to the Newtonian potential
h00 Dh11 D h22 Dh33 D 2˚ by g D �r˚ . (In the literature, these two gravitational
fields are occasionally denoted by Bg and Eg, with the potentials Ag and ˚g.) The
(gauge-dependent) equations of gravitomagnetism (4.6)–(4.9) are restricted to the
weak-field approximation of general relativity, to stationary (i.e., effectively time-
independent) gravity fields, and to slowly moving source masses and test masses (in
the measuring device), something that would seem to be realistic for all foreseeable
experiments measuring gravitomagnetism (see below).

It should, however, be mentioned that, as in electromagnetism, the strength of
the gravitomagnetic field in relation to the gravitoelectric (quasi-Newtonian) field
depends to a large extent on the velocity of the observer and that, in the literature,
there are some misunderstandings about which effects are real gravitomagnetic
effects and which are not. There are even misunderstandings about the validity
of this linear approach to GEM. Within a Maxwell-type, covariant formulation of
GEM based on ‘tidal tensors’ and for strong gravity fields, Costa and Herdeiro
(2008) showed that the linear GEM formulation, with its noncovariant and gauge-
dependent fields, are valid only for weak, stationary, i.e., time-independent fields,
and slowly moving sources. In particular, there is no gravitational analogue to
Faraday’s law of induction. [A careful mathematical analysis of the role of gauge
transformation in this context is given by Clark and Tucker (2000) with the same
result concerning the time dependence of solutions to different GEM equations.]

Before providing solutions to (4.6)–(4.9), we come back to the above-mentioned
counteraction between gravitational attraction and gravitomagnetic repulsion for
two relativistically rotating bodies. In Pfister and Schedel (1987), it has been shown
in the weak-field approximation of general relativity that, for two infinitely thin
spherical shells of matter, corotating about the same axis (angular velocity !),
gravitomagnetic repulsion can partly compensate for the attraction. In the extreme
limit of infinitely high ‘multipolarity’ of the mass density, the shells degenerate to
mass rings. If the distance between the two bodies vanishes, and if we take the
limit v=c D !R=c ! 1 (but only in this unphysical limit!), gravitational attraction
exactly balances gravitomagnetic repulsion. In the case of two aligned rotating black
holes with parallel spins, where the ‘spin–spin interaction’ generating repulsive
effects may compensate gravitational attraction, Neugebauer and Hennig (2009)
and Hennig and Neugebauer (2011) showed non-existence for these two-black-hole
configurations.

For a rotationally accelerated central mass (linearly accelerated heavy masses
and their corresponding gravitational fields play practically no role in any relativistic
situation), the corresponding mass-energy currents create a gravitomagnetic dipole
field, just as in electrodynamics, e.g., a rotating charged sphere (or the current due
to the rotation of the shell) is the source of a magnetic (dipolar) field (see, e.g.,
Ciufolini 1994; Ciufolini and Wheeler 1995). In this case, the field equations of
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general relativity in the weak-field and slow-motion approximation take a form very
close to Maxwell’s equation for a stationary electric current distribution jq D %qv in
the Coulomb gauge�A D �4�jq , where A is the (electromagnetic) vector potential
and B D r �A is the corresponding magnetic field. Far from the source, the leading
order of the potential in a formal power series in 1=r is a magnetic dipole vector
potential A.r/ D .m � r/=r3, which has a radial fall-off behavior � 1=r2, and
where m is the magnetic moment of the stationary current distribution. Hence, the
magnetic dipole field reads

B.r/ D 1

r3

�
�m C 3r

r2
.m � r/

�
� 1=r3 :

Similarly, and by formal analogy with Ampere’s law, in the weak-field and slow-
motion limit, subject to the Lorenz gauge, and for a stationary mass-energy current
distribution jm D �mv, Einstein’s field equation�h D 16�jm may be solved for the
gravitomagnetic potential h and field H. Again, far from the gravitating system in
the asymptotic regime, the leading term � 1=r2 is h.r/ D �2.J � r/=r3, where J
is the intrinsic angular momentum of the central mass. The vector potential h now
defines the gravitomagnetic field:

H.r/ D r � h D 2

r3

�
J � 3r

r2
.J � r/

�
� 1=r3 : (4.10)

Noting the formal equivalence of the magnetic moment m and the angular momen-
tum J, the gravitomagnetic field H looks quite similar to the magnetic dipole field
B, except, as already mentioned, for the minus sign (as gravity is always attractive)
and a factor 2 (reflecting the different spin of the gravitational and electromagnetic
interactions). Despite the fact that this new gravitational field has been derived
in the approximations made above, it has to be stressed that the phenomenon of
gravitomagnetism is not restricted to weak gravitational fields and slowly moving
objects (see the invariant characterization of gravitomagnetism below)!

The geodesic equation on stationary spacetimes, exhibiting weak gravitational
fields, due to slowly moving and stationary mass currents reads

mRr D m.g C v � H/ ; g.r/ D �M
r2

r
r
;

where g is the standard Newtonian acceleration. This equation of motion for a test
particle with mass m is once again strikingly similar to the Lorentz force field of a
moving charge q in classical electrodynamics, viz., mRr D qŒE C .v=c/ � B�. The
Lorentz force exerts a torque � D m � B on a magnetic dipole moment, and this, by
analogy, transfers to a torque on a test gyroscope with spin S in general relativity.
Then from the equation for parallel transport of a spin vector S�, one gets

� D 1

2
S � H D dS

dt
� ˝ � S ;
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with an angular velocity

˝ D �1
2

H D � 1

r3

�
J � 3r

r2
.J � r/

�
; (4.11)

with respect to an observer in an asymptotic inertial system. This is the standard
formula quoted as ‘dragging of inertial frames’, where the axes of the local inertial
systems are defined operationally by the direction of the spin of test gyroscopes. For
a gyro located at the north pole of the (hypothetical exactly spherically symmetric)
Earth, one can estimate the precession rate to be of the order of

˝gyro.north pole/ D 4

5

GM

c2R
!E 	 5:5 � 10�10!E :

Now, the gravitomagnetic field H is linked to a ‘force’

F D
�
1

2
S � r

�
H

on the gyro’s spin. This force field is sometimes called the ‘gravitomagnetic force’.
Although in Newtonian theory the concept of a force is of central importance and
crucial for the dynamics of bodies, this concept, so extremely successful in our
everyday life, is finally fading out and even breaks down in general relativity. In
particular, inertial and gravitational forces are unified, and gravity is no longer a
force in the Newtonian sense. The fundamental field is now the spacetime metric
g�� , from which we deduce the affine connection  	

�� characterizing the inertial
structure of spacetime. For these reasons, we avoid the term ‘gravitomagnetic force’
in the general relativistic spacetime picture. [However, for some illustrative thought
experiments on gravitational ‘forces’ in general relativity, well definable for static
and stationary spacetimes, see Lynden-Bell and Katz (2014).]

From (4.11), another well-known formula may be derived, namely the Lense–
Thirring precession (Lense and Thirring 1918) of a test particle orbiting a central
mass with angular momentum J. The Lense–Thirring nodal precession describes
the secular rate of change of the orientation of the orbital plane and the longitude of
the nodes:

˝Lense–Thirring D 2J
a3.1 � e2/3=2

: (4.12)

Here, the orbital parameters of the ‘test’ object (e.g., an artificial satellite, the Moon
orbiting the Earth, etc.) are the semimajor axis a and the eccentricity e. For a circular
(e D 0) orbit (radius r) of the test particle, (4.12) simplifies to ˝Lense–Thirring D
2J=r3.

To characterize gravitomagnetism without recourse to any frame attached to,
or any coordinate system labelling spacetime, we refer this new gravitational field
intrinsically to spacetime invariants. The presentation given here follows closely the
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method proposed in Ciufolini (1994), Ciufolini (1995, pp. 386–402), and Ciufolini
and Wheeler (1995, Sect. 6.11). As for the field equations for the gravitomagnetic
potential h and field H, we motivate this characterization by its formal analogy
with classical and special relativistic electrodynamics. In Maxwell’s theory on
flat Minkowski spacetime, there exist two different scalar Lorentz invariants, i.e.,
algebraic combinations of the electric and the magnetic field, E and B, which are the
coefficients of the characteristic polynomial of the skewsymmetric electromagnetic
field tensor F�� . First, the invariant

I1 D �1
2
F˛ˇF

˛ˇ D jE2j � jB2j ;

and second, the pseudoinvariant

I2 D 1

4
F˛ˇ

?F ˛ˇ D E � B :

Here ?F ˛ˇ D "˛ˇ��F��=2, where "˛ˇ�� is the Levi-Civita pseudotensor, and ? the
duality operation. Now, in the rest frame of a charge q (without a magnetic dipole
moment m), we have only a nonvanishing electric field (the electrostatic Coulomb
field), and therefore I1 ¤ 0 and I2 D 0. And this even in an inertial system moving
with velocity v with respect to the rest frame, and where both E ¤ 0 and B ¤ 0 (the
magnetic field according to the transformation property of the field tensor OF�

� D
�
�
˛�

ˇ
�F

˛
ˇ). It is only in a rest frame with a charge and a magnetic dipole moment

that I2 ¤ 0 in any case, i.e., independently either of the chosen Lorentz frame or
due to a mere coordinate transformation.

In Einstein’s theory of general relativity on curved spacetime, there are invariants
of the Riemann tensor R��	� as well, e.g., the Ricci scalar R vanishes in flat
spacetime, again irrespective of the frame attached to, or the coordinates labelling,
spacetime. [For a complete classification of the 14 independent curvature scalar
invariants, of which only four are independent in empty space, see Petrov (1969,
Sect. 21).] A further invariant is the Kretschmann invariant K1 D R��	�R

��	� ,
which for spacetimes characterized by mass M and angular momentum J (like
the Kerr black hole family) is a function f .M=r3; J=r4/ with the leading term
proportional to the mass. Therefore, the Kretschmann invariant is nonvanishing even
if the angular momentum is zero. Now, mass-energy currents influence spacetime
and create curvature, so gravitomagnetism may not be intrinsically determined by
the Kretschmann scalar. As in the electromagnetic case described above, there is an
invariant analogous to I2, the pseudotensor

K2 D Œ?R���	�R
��	� D 1

2
"˛ˇ��R�
��R˛ˇ�


or Chern–Pontryagin invariant built from the Riemann tensor and the Levi-Civita
pseudotensor, which characterizes the gravitomagnetic field and the spacetime
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structure (in contrast to I2, which characterizes only the field F�� and not the
Minkowski spacetime ���). This invariant (and Kretschmann’s invariant) have
already been given by Matte (1953) and Petrov (1969), but without any physical
discussion of the quantity or any reference to gravitomagnetism. [For an overview of
second order scalar invariants of the Riemann tensor, i.e., the Kretschmann invariant
K1, Chern–Pontryagin invariantK2, and Euler invariantK3 D Œ?R ?���	�R

��	� , in
the framework of the GEM formalism, see Cherubini et al. (2002) and also Costa
and Herdeiro (2008).]

Now, the angular momentum J changes sign by a time reflection, as can
be inferred from the asymptotic behavior of the g�t component of the metric
of a stationary solution to Einstein’s field equations (see, e.g., Misner et al.
1973, Sect. 19.3). Since the pseudotensor K2 changes sign under the coordinate
transformation t ! �t as well, the pseudotensor is proportional to the intrinsic
angular momentum and an odd function of the intrinsic mass-energy currents.
Asymptotically and in the weak-field limit, one gets for any stationary solution
K2 � .JM=r7/ cos � , indicating a gravitomagnetic contribution to spacetime
geometry and curvature. Put another way, the Chern–Pontryagin invariant K2

indicates the existence and presence of a gravitomagnetic field H, just as the
electromagnetic invariant I2 determines the existence and presence of a magnetic
field B, a satisfactory concept which rests entirely on spacetime invariants and
not on coordinate dependent ‘magnetic’ components g0� of the metric, or R�0�

of the Riemann tensor (which can always be made nonzero by local Lorentz
transformations according to Og0i D �˛

0�
ˇ
i g˛ˇ and ORi0jk D �˛

i �
ˇ
0�

�
j �

�
kR˛ˇ�� ,

respectively).
In the last part of this section, we give an overview of the experimental status

of the measurement of gravitomagnetism. Since most of the tests are Earth-based
experiments or satellite missions in Earth orbit, we first estimate the accuracy
which has to be achieved here (Pfister 2012, 2014). For laboratories on Earth
and for satellites there is a factor ME=RE 	 10�9 for any deviations from
Newtonian gravity. For rotational accelerations another factor !ERE=c 	 10�6
accumulates with this to yield a factor 10�15 for any gravitomagnetic field in
comparison to Newtonian gravity. Since, in contrast to electromagnets, there exist
no gravitomagnetic materials in nature, there is typically another factor v=c 

10�5 from the velocity v of the rotating parts of the measuring device (except
where these are photons or neutrinos). Presumably, the resulting demand for a
total precision of 10�20 will not be fulfilled by any laboratory experiment in the
foreseeable future, although some groups are making attempts in this direction,
e.g., with an underground multi-ring laser gyroscope (Bosi et al. 2011), or with
Bose–Einstein condensates in a drop tower (van Zoest et al. 2010). For neutron
stars, pulsars, and black holes, the figures for M=R and v=c are of course much
more favorable, but there are usually competing, poorly understood processes near
these systems. Furthermore, near neutron stars, there are of course no laboratories or
other precisely measurable test systems, and for greater distances from the star, the
gravitomagnetic field falls off as r�3, as any dipole field does. Hence, even for these
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astrophysical systems, there is not much hope for an unambiguous measurement of
gravitomagnetism in the near future (Stella and Possenti 2009).

Now, such experiments are generally of the following kind (Pfister 2004).
Imagine a physicist performing experiments in a closed local laboratory, and in par-
ticular determining the local inertial systems relative to the laboratory walls, using
various kinds of physical phenomena, e.g., Foucault pendulums, gyros, Sagnac-
type experiments, and other experiments based on electromagnetic interactions,
etc., but of the highest possible precision. In all cases the result (which is in part a
consequence of the equivalence principle) is the same (modulo Galilean and Lorentz
transformations)! Having done this, he opens the ‘windows’ of his laboratory and
looks up at the sky and the universe. He will (hopefully) be entirely puzzled (MTWs
‘miracle of miracles’, mentioned in the previous section) to find that the local
inertial systems are in fact non-accelerated, in particular non-rotating, with respect
to the ‘cosmic rest system’, i.e., the faraway stars, galaxies, quasars, and the cosmic
background radiation. Today, this observational fact seems to be the most significant
hint of the influence of the cosmos as a whole on our local physics. As stated in detail
in Sect. 4.3, this ‘cosmic coincidence’, i.e., the non-rotation of the local inertial
systems relative to the ‘fixed’ stars (which has no explanation at all in Newtonian
gravity and Newtonian cosmology), has been tested experimentally to an accuracy
of 10�9 of the Earth’s rotation.

All other rotationally accelerated ‘Machian experiments’ try, either directly or
indirectly, to measure the tiny Lense–Thirring effect. These experiments which aim
to measure the gravitomagnetic field H take place in gravity’s weak-field regime
(mainly in the Solar System, and in particular in the weak gravitational field of the
rotating Earth) and rest on the slow-motion approximation of the test particle (e.g.,
an orbiting artificial satellite). Historically, the first proposal was made by L. Schiff
in Schiff (1960), who derived the equations of motion for the spin S of a test particle
[see (4.10)]:

dS
dt

D ˝ � S ; with ˝ D 1

2
F � v C 3M

2r3
.r � v/C I

r3

�
3r
r2
.! � r/� !

�
;

(4.13)

where F is any external, non-gravitational force (vanishing for geodetic motion),
and M , I , and ! are the Earth’s mass, moment of inertia, and angular velocity,
respectively, with r and v the distance from the Earth’s center and the velocity of
the gyroscope, respectively. The second term of ˝ in (4.13) is called the geodetic
or deSitter precession ˝deSitter, and was first measured with an accuracy of 2 %
by lunar laser ranging of the Earth–Moon system in the gravitational field of the
Sun (Shapiro et al. 1988). [At the present time, lunar laser ranging can achieve an
accuracy of about 6�10�3 for the deSitter effect, see references in Ciufolini (2007).]
The last term characterizes the Lense–Thirring precession ˝Lense–Thirring.

A rather high-technology satellite project to measure both precession effects,
pushing technologies to an extreme in many places (and costing US$700 million),
has been developed in Stanford at the Hansen Laboratory since the 1960s by
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William Fairbank, Francis Everitt, and coworkers. This is Gravity Probe B. (In
principle, satellite missions, apart from the fact that they are automatically quite
clean systems in high vacuum and at low temperature, have the advantage that they
can run for years and over very many revolutions of the satellite, in this way partly
compensating for the challenging precision demand of 10�20 estimated above.)
For a detailed overview of this space mission see, e.g., Everitt et al. (2001) and
Overduin (2010). The NASA satellite, launched on 20 April 2004, orbits Earth on
a polar, ‘low’ altitude orbit of about 650 km (because of the 1=r3 radial fall-off
behavior of ˝Lense–Thirring), in order to eliminate higher multipole moments of the
Earth gravitational field, and to separate in direction both precession effects in an
optimal way.

The core of the experiment consisted of four superconducting gyros, ‘free’ of
drag to the level of 10�10 g in 2;440 l of superfluid helium at 1.8 K. In detail,
each gyro is a quartz sphere of approximately 4 cm in diameter, coated with a
superconducting niobium layer, and homogeneous and spherical to within 10�6
(probably the most spherical objects ever manufactured!), and rotating in a quartz
housing at a frequency of about 100Hz. The satellite is carried along with the freely
flying quartz spheres in order to get F � 0 in (4.13). The spins of the gyros and their
rates of change of direction with respect to the fixed star Rigel, and the respective
London magnetic moments were read out by a cryogenic SQUID magnetometer.
With it, the Earth’s and other magnetic fields had to be shielded to better than
10�6 G.

The data-collecting phase of the mission lasted nearly a year and data analysis
of Gravity Probe B showed unforeseen effects and unexpected complications due to
problems with electric charges on the gyroscopes. These electrostatic contact poten-
tials originated because, while both the gyro rotors and quartz housings achieved
almost perfect mechanical sphericity, they were not quite spherical electrically,
with the consequence of additional, anomalous Newtonian torques on the spins. In
summary, after more than 35 years of preparation and after 5 years of sophisticated
data analysis and error corrections, Gravity Probe B has succeeded in directly
measuring both precession terms. The theoretically predicted geodetic precession
˝deSitter 	 6:602 arcsec/year has been observed at 0.28 %, and the Lense–Thirring
precession ˝Lense–Thirring 	 42marcsec/year with an accuracy of approximately
19 % (Everitt et al. 2011). Initially, the space mission was planned with intended
accuracies of about 2 � 10�5 % and 0.3 %, respectively.

An alternative, rather sophisticated, and quite ‘inexpensive’ experiment com-
pared to GP-B, based on existing technologies was proposed in the period 1984–
1986 by I. Ciufolini to measure the Lense–Thirring effect (Ciufolini 1986) [for a
detailed overview see, e.g., Ciufolini and Wheeler (1995, Sects. 6.7 and 6.8)]. Unlike
GP-B, LAGEOS (LAser-ranged GEOdynamic Satellite) is a ‘high’-altitude satellite
mission primarily designed to detect plate tectonic motions, natural resources, the
rotation and higher multipoles of the Earth, etc. Since 1976, a small satellite (only
30 cm in diameter, 400 kg), which is laser-tracked to an accuracy of the order of 10�8
and better, has been orbiting at about 5;900 km. The Lense–Thirring effect results in
a precession of the nodal lines (the intersection of the satellite orbital plane with the
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equatorial plane of the Earth) of approximately˝Lense–Thirring
LAGEOS D 2J=a3.1�e2/3=2 D

0:031marcsec/year, where J , a, and e are the angular momentum, semimajor axis,
and orbital eccentricity of the satellite, respectively [see (4.12)]. However, this
precession is completely masked by the ‘classical’ precession of about ˝classical

LAGEOS D
126ı/year, due to the even zonal harmonic coefficients J2n of the Earth.

Ciufolini’s key idea was to launch a second LAGEOS satellite with an inclination
I2 D 180ı � I1 and otherwise equal orbital parameters, which eliminates the
classical precession of the nodal lines (˝classical

I1
D �˝classical

I2
) but doubles

the Lense–Thirring effect. LAGEOS II was launched in 1992 at an altitude of
approximately 5;800 km with a ‘suboptimal’ inclination of I2 D 162:5ı � I1. Data
analysis over 11 years of laser ranging of the nodal precession of the two satellites
finally culminated in a quite conservative estimate of the total uncertainty of about
10 % of the Lense–Thirring effect (Ciufolini and Pavlis 2004; Ciufolini 2007). Most
of the error sources, namely the periodic perturbations, are averaged out, while
the Lense–Thirring drag is cumulative. The main progress was accomplished by
a careful error analysis and in particular by the use of an improved model of
the terrestrial gravitational field. The space mission GRACE (Gravity Recovery
And Climate Experiment), launched in 2002, provided an enhanced Earth gravity
model which included the even zonal coefficients J2n (the main contribution to the
uncertainty comes from the one due to the Earth’s axially symmetric departure from
sphericity •J4, and from the uncertainty •J2 in the Earth’s quadrupole moment,
describing the Earth’s oblateness) (see, e.g., Ciufolini et al. 2010).

An improvement of about one order of magnitude (i.e., an achieved accuracy
of approximately 1 %) of the measurement of the Lense–Thirring effect due to
the Earth’s gravitomagnetic field is expected from the recently (2012) launched,
laser-tracked satellite LARES (LAser RElativity Satellite). Currently, this small
spacecraft approximates the behaviour of a ‘test-particle’ at best, i.e., it shows
the smallest deviations from geodesic motion of any artificial satellite in free
fall orbit [its residual mean acceleration away from geodesic motion is less than
0:5�10�12 m=s2 (Ciufolini et al. 2012)]. Due to the Ehlers–Geroch theorem (Ehlers
and Geroch 2004), which asserts that small (but extended) massive bodies move
on near-geodesics (if the Einstein tensor satisfies the dominant energy condition),
this fact is in a way crucial for tests of general relativity based on test-particle
assumptions.

Finally, the role of gravitomagnetism may also be inferred from another, not
yet directly measured phenomenon of Einstein’s gravitational theory of general
relativity, totally unknown to its Newtonian counterpart, the existence of gravita-
tional waves (as detected indirectly by the pulsar PSR 1913C16). If gravitational
waves can be analyzed in detail in the future, this will also be an indirect test
for gravitomagnetism, because gravitational waves have equal gravitoelectric and
gravitomagnetic contributions (just as in the case of electromagnetism, where
electromagnetic waves would be barely conceivable without the existence of
magnetism).
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Appendix A
A Sketch of the Proof that the Inertial Path
Structure Follows from a Local Desargues
Property

In this appendix we present a sketch, and important details, of the proof that a
path structure which obeys the Desargues incidence properties up to order �2 in
a two-dimensional �-neighborhood of a ‘central point’ e in spacetime is a free fall
structure, i.e., it is linear up to order �2. More details can be found in Heilig and
Pfister (1990, Sect. 4).

If, in agreement with EPS, we assume that the free particle paths are one-
dimensional C3-submanifolds of M , then such a path through an event p (in
the �-neighborhood of e, which we choose as the origin of the two-dimensional
coordinate system) can be Taylor expanded in the path parameter � :

x�.�/ D x�.0/C �v�.0/C �2a�.x�; v	/CO.�3/

	 x�.0/C �v�.0/C �2a�.0; v�/CO.�3/ ; (A.1)

where K�.v�/ WD a�.0; v�/ is the ‘acceleration field’. Because the path depends
only on the direction at p, and not on the ‘length’ of v�.0/, we have the scaling law
K�.	v�/ D 	2K�.v�/ for all 	 6D 0. With � D �� and � finite (non-infinitesimal,
but such that the path does not leave the �-neighborhood of the origin), (A.1) takes
the form

x�.��/ D x�.0/C ��v� C �2�2K�.v�/CO.�3/ ; (A.2)

and if this path connects (exactly to order �2) the events p and q, we have

x�.��/ D x�p C �v� C �2�.� � 1/K�.v�/CO.�3/ ; (A.3)

with v� D x
�
q � x

�
p . In a two-dimensional coordinate system, the decisive last

term of this equation can be considerably simplified. By an appropriate parameter
transformation � ! 
 , we can achieve that the component K2 vanishes, and
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a rescaling of K� D .K1;K2/ can have the result that K1 depends only on
v2=v1 :

x�.�
/ D x�p C 
v� C 
.
 � 1/.v1/2
�
g.v2=v1/

0

�
CO.�3/ : (A.4)

It turns out that, to prove the ‘if’ part of Axiom P2 in Sect. 2.3 in two dimensions,
we do not need the most general Desargues configuration. It suffices to consider the
case where the path P is the x1-axis, P 0 the x2-axis, P 00 the path defined by e and
A00, and the points A; : : : ; B 00 have the coordinates A D �.1; 0/, B D �.�1; 0/,
A0 D �.0; a/, B 0 D �.0; 1/, A00 D �.1; 1/, and B 00 D �.c; c/C �2c.c � 1/.g.1/; 0/,
where a and c are largely arbitrary real numbers, but such that the whole Desargues
figure is confined to an �-neighborhood of the origin. The events e1; e2; e3 are then
easily found (up to errors of order �3) as the intersection points of pairs of paths of
the form (A.4), according to Fig. 1.2 of Sect. 1.4:

e1 D �

1C a

�
a � 1

2a

�
C 2a.1 � a/�2

.1C a/3

�
g.�a/ � g.1/
g.�a/C ag.1/

�
;

e2 D �

1C c

�
1C c

2c

�
C 2c.1 � c/�2

.1C c/3

�
0

c.1C c/g.1/ � .1C c/2g.c=.1C c//

�
;

e3 D �

1 � ac

�
c.1 � a/

a C c � 2ac

�

Cc.1 � a/2.c � 1/2�2
.1 � ac/3

0
B@

c

c � 1
g.1 � a/ � ac

1 � a
g.
c � 1

c
/ � 1 � ac

1 � a
g.1/

g.1 � a/ � acg.
c � 1

c
/� .1 � ac/g.1/

1
CA :

Now, the Desargues theorem requires that e3 lies, up to order �2, on the path defined
by e1 and e2. This leads to the following functional equation for the function g.x/:

c.1C 2a/.1 � ac/g.1/ D c.1 � a2/g.1 � a/C ac2.c � 1/.1C a/g

�
c � 1
c

�

�a.1 � ac/g.�a/C .1 � ac/.1C a/c.1C c/g

�
c

1C c

�

�.c � a/.1C c/g

�
c � a

1C c

�
: (A.5)

In the review Rund et al. (1992) of the paper Heilig and Pfister (1990), the well-
known mathematician H. Rund has called this a ‘formidable functional equation’.
But he has also praised the paper as “a most ingenious application of the concepts
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of projective geometry to a study of the foundations of classical mechanics, special
relativity, and the general theory of relativity”.

It is easily checked that g.x/ � g.1/ = const. satisfies (A.5). This leads to a
slightly simpler functional equation for the function f .x/ D g.1 � x/ � g.1/:

0 D c.1 � a2/f .a/C ac2.1C a/.c � 1/f
�
1

c

�
� a.1 � ac/f .1C a/

�.c�a/.1C c/f

�
1C a

1C c

�
C .1�ac/.1C a/c.1C c/f

�
1

1C c

�
: (A.6)

A somewhat technical proof in Heilig and Pfister (1990) leads to the relation
f .x/ D x2f .1=x/, and this together with (A.6) results finally in f .x/ D ˛x, with
a constant ˛, or in g.x/ D ˇx � � , with constants ˇ; � . Inserting this into (A.4)
and performing appropriate coordinate and parameter transformations nullifies the
acceleration term of this equation and proves that all paths in the two-dimensional
Desargues configuration are linear paths up to order �2. The extension of the proof
to higher dimensions is, as mentioned, quite formal, due to the surface-forming
property of pairs of paths like AA00 and AA00 in Fig. 1.2 of Sect. 1.4. The coordinates
of the eventsA; : : : ; B 00 must of course be chosen anew (but again in a special way),
and appropriate coordinate and parameter transformations must then be applied once
again. But no new functional equation like (A.5) or (A.6) has to be solved. (For
details see Heilig and Pfister 1990, Sect. 4.)
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Appendix B
Slowly Rotating Mass Shells with Flat Interiors

In the papers (Pfister and Braun 1985, 1986) stationary and axisymmetric rotating
mass shells with flat interiors, with possibly high mass values M , radius R, and
small angular velocities ! have already been calculated mathematically (as power
series in ! R � 1), and physically analyzed, in particular concerning Mach’s
idea of relativity of rotation. Here we repeat and summarize some of these results,
but we no longer calculate the energy-momentum tensor of the shell material
using the discontinuities of the derivatives of the metric functions at the shell
position but by using the more elegant, mainly geometric formalism of Israel (1966)
which expresses the energy-momentum tensor of the shell in terms of the extrinsic
curvatures of the embeddings of the mass shell† in the different vacuum spacetimes
V C and V � for the exterior and interior of the shell. We also correct some errors
in the papers (Pfister and Braun 1985, 1986). Although in the Israel-formalism it is
not necessary to have a continuous metric across the shell, we nevertheless use the
metric form of Pfister and Braun (1985):

ds2 D g��dx�dx� D �e2U dt2 C e�2U Œe2K.dr2 C r2d#2/CW 2.d' � ! Adt/2�;
(B.1)

where the metric functions U;K;W;A are functions of r and # only, due to
stationarity and axial symmetry of our models. This form provides a continuous
metric across the shell, and we can use the explicit solutions of Einstein’s vacuum
field equations given in Pfister and Braun (1985, 1986). Furthermore, it turns out
that starting (for ! D 0) with the Schwarzschild mass shell in Schwarzschild
coordinates, besides being discontinuous, would lead to algebraically more com-
plicated expressions for the energy-momentum tensor and for the metric corrections
in higher orders in !, containing square roots [compare Pfister and Braun (1985)
with, e.g., Pfister et al. (2005)].
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A complete set of independent vacuum field equations for the metric (B.1) reads

�W D 0; (B.2)

W �U C .U1W1 C 1
r2
U2W2/ D !2

2
W 3 e�4U .A21 C 1

r2
A22/; (B.3)

W12 � 1
r
W2 C 2W U1U2 �K1W2 �K2W1 D !2

2
W 3 e�4U A1A2; (B.4)

W11 CW.U 2
1 � 1

r2
U 2
2 / �K1W1 C 1

r2
K2W2 D !2

4
W 3 e�4U .A21 � 1

r2
A22/; (B.5)

�AC 3
W
.A1W1 C 1

r2
A2W2/ � 4.U1A1 C 1

r2
U2A2/ D 0; (B.6)

where a subscript 1 denotes the r-derivative and a subscript 2 the #-derivative, and
where� D @2=@r2Cr�1@=@rCr�2@2=@#2 is the flat Laplacian. Obviously, (B.2)–
(B.5) are relevant for the even orders in ! in our power series expansion, and (B.6)
for the odd orders.

With the dimensionless variables x D 2r=M and X D 2R=M , it is well known
from the literature that, in the static limit of the Schwarzschild shell, we have (in
isotropic coordinates):

0

U .x/ D log
x � 1
x C 1

for V C.x > X/;
0

U D log
X � 1

X C 1
for V �.x < X/;

(B.7)

0

K.x/ D log
x2 � 1
x2

for V C.x > X/;
0

K D log
X2 � 1

X2
for V �.x < X/;

(B.8)

0

W .x; #/ D e
0
K.x/r sin#: (B.9)

As basis vectors in †.r D R/ we choose e�t D .1; 0; 0; 0/; e
�

# D .0; 0; 1; 0/; and
e
�
' D .0; 0; 0; 1/: The unit normal vector to † is n� D .0; .XC1/2=X2; 0; 0/: [In

Schwarzschild coordinates the time coordinate t , the basis vector e�t and n� would
be discontinuous at r D R (Pfister et al. 2005)!] According to Israel (1966) the
symmetric extrinsic curvature 3-tensors in V C and V � are given by

Kab D n�e
�
aIb; (B.10)

with .a; b/ 2 .t; #; '/. Since in the static case n� has only an r-component, and

the vectors e�a are constant, we have
0

Kab D nr
.4/�rbc e

c
a, and since only diagonal
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metric-components are present, and only the r-derivatives count, the evaluation is
relatively simple, with the result:

R
0

K

C
tt D 2X3.X � 1/

.X C 1/5
;

0

K

C
##

R
D

0

K

C
''

R sin2 #
D �X

2 � 1
X2

;

0

K

�
##

R
D

0

K

�
''

R sin2 #
D � .X C 1/2

X2
: (B.11)

All other
0

Kab are zero in the static case. According to Israel (1966) one defines
�ab D KC

ab � K�
ab, whence the energy-momentum tensor becomes 8� Sab D �ab �

ıab �
c
c , with the explicit results

8� R
0

S t
t D � 4X2

.X C 1/3
; 8� R

0

S #
# D 8� R

0

S '
' D 2X2

.X C 1/3.X � 1/ : (B.12)

These terms coincide with the results of (2.12) in Pfister and Braun (1985), if one
takes into consideration the fact that there the components of the energy-momentum
tensor were multiplied by a function ı.r � R/.

According to Pfister and Braun (1985), to fist order in !, the metric function
0

A.r; #/ is independent of # . To solve (B.6), it is advantageous to introduce the
variables y D 4x=.x C 1/2 and Y D 4X=.X C 1/2. These variables are also
preferable for some of the later analysis of the higher orders in !, but not in all
expressions, because otherwise square roots

p
1 � y would appear. Then to order

!, (B.6) takes the form

	 d2
dy2

� 2

y

d

dy


 0

A.y/ D 0: (B.13)

From the two solutions we have to choose the one which falls off asymptotically,
because we define rotation relative to the asymptotic rest frame,

0

A.y/ D 	
	y
4


3
for V C.y > Y /;

0

A D 	
	Y
4


3
for V �.y < Y /; (B.14)

with a constant 	. [This constant and the later integration constants are defined
differently than in Pfister and Braun (1985, 1986)!] For the extrinsic curvature

components
1

Kt' we then get

1

K

C
t' D �!R	 X.X � 1/

2.X C 1/5
sin2 #;

1

K

�
t' D !R	

X

.X C 1/4
sin2 #; (B.15)
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and

8�
1

S
'
t D � !	X5.3X � 1/

2R.X C 1/8.X � 1/
: (B.16)

The constant 	 must of course to be related to the angular velocity ! in such a way
that the energy current S't describes the rigid and axial rotation of the spherical mass
shell. (A geometric deformation and a nonspherical mass distribution of the shell
happen only in the higher even orders of !. See below.) This means mathematically
that the four-velocity of the matter has the form u� D ut .1; 0; 0; !/, and is an
eigenvector of the energy-momentum tensor: S�� u� D �� u�, with the invariant
mass density � D �Stt . From the equation for � D ' we get

	 D 4
.X C 1/5.2X � 1/

X3.3X � 1/ ; (B.17)

being equivalent to (2.15) in Pfister and Braun (1985).

To order !2 the solution
0

A.r/ from (B.14) operates as a source term in the field
equations (B.2)–(B.5). It is therefore clear that in the expansions

N.r; #/ D 0

N .r; #/C .!R/2
2

N .r; #/C .!R/4
4

N .r; #/C : : :

for N 2 .W;U;K;A/, expanded in addition in Legendre polynomials Pl.cos#/,

the potentials
2

N .r; #/ contain only P0 and P2, similar to Hartle’s work (Hartle
1967) on slowly rotating stars. [The uneven Legendre polynomials are missing due
to the equatorial symmetry of the problem. These expansions in powers of !R, i.e.,
of the velocity of the shell matter in units of the light velocity, seem to be more
appropriate than the expansions in powers of !M in Pfister and Braun (1986).]

The functions
2

N .r; #/;
4

N .r; #/, and so on, must of course fall off asymptotically,
in order to realize Minkowski geometry there. They must even fall off at least as

fast as the functions
0

N .r/, in order that the power series expansion in ! should

also be consistent asymptotically, i.e.,
2

U ;
4

U , and so on, must fall off at least like

r�1, then
2

K;
4

K, and so on, at least like r�2, and
2

A;
4

A, and so on, at least like r�3.
We even demand that

2

U ;
4

U , and so on, should fall off more quickly than r�1, in

order that the mass value M is fixed by the function
0

U .r/, and is not corrected by
higher orders in !. According to (B.2), the function W;22 .#/ has to reproduce the
#-behavior ofW.#/. A complete set of such functions is the series {sinn#; cosn#}
with n D 1; 2; 3; : : : . The functions cosn# drop out because they would lead to
a singularity of the metric (B.1) at the poles # D 0; � . For the functions sin n#
only odd n are allowed due to the equatorial symmetry. For a function sin n#
the x-behavior can only be xn and x�n, according to (B.2). However, the positive
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powers are forbidden due to the asymptotic behavior, and because the total massM
should not attain corrections from higher orders of !. Therefore, the only consistent
solution of (B.2) to order !2 is

2

W .x; #/ D M
	ˇ0
x

sin# C ˇ2

x3
sin 3#



D M sin#

�
ˇ0

x
C ˇ2

x3
.3 � 4 sin2 #/

�
;

(B.18)

with integration constants ˇ0; ˇ2.

With
2

U .x; #/ D g.x/ C h.x/P2.cos#/, (B.3) splits into the two differential
equations:

h00 C 2x

x2 � 1h
0 � 6

x2
h D 64ˇ2.2x

2 � 1/

3x3.x2 � 1/3 � 3	2x2

X2.x C 1/8
; (B.19)

g00 C 2x

x2 � 1
g0 D 8ˇ0x

.x2 � 1/3
C 8ˇ2.2x

2 � 1/
3x3.x2 � 1/3

C 3	2x2

X2.x C 1/8
; (B.20)

where h0; h00; etc. denote the derivatives of these functions with respect to x. The
asymptotically decreasing solutions are:

h.x/ D 16ˇ2

3x.x2 � 1/
C 	2x3

12X2.x C 1/6

C�2
h2.x2 C 1/

x
C .x2 C 2

3
C 1

x2
/ log

x � 1

x C 1

i
; (B.21)

g.x/ D 2ˇ0x

x2 � 1
C 2ˇ2.3x

2 � 2/

3x.x2 � 1/ � 	2x.x4 C 6x3 C 46x2=3C 6x C 1/

64X2.x C 1/6

C�0 log
x � 1

x C 1
; (B.22)

with integration constants �2 and �0. To ensure that the total mass M of the shell is

not changed in order !2, the term
2

U .x; #/ has to fall off asymptotically faster than
x�1, which requires �0 D ˇ0 C ˇ2 � 	2=128X2:

In order to find the solution
2

K.x; #/, we first consider (B.4) to order !2. After

inserting
2

W and
2

U , and taking into account the ‘angular momentum cutoff’ in the
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form
2

K.x; #/ D k.x/ C l.x/ sin2 # , (B.4) breaks down into the two first order
differential equations:

k0.x/ D � 4x

.x2 � 1/2

h
ˇ0 C 3ˇ2

x4
.2x2 � 1/

i
; (B.23)

.x2 � 1/l 0.x/C 2

x
.x2 C 1/l.x/ D 48ˇ2.2x

2 � 1/

x3.x2 � 1/ � 12h.x/: (B.24)

The asymptotically decreasing solutions are:

k.x/ D 2ˇ0

x2 � 1 C 6ˇ2

x2.x2 � 1/ ; (B.25)

l.x/ D �4ˇ2.4x
2 � 3/

x2.x2 � 1/2 C 	2x4

2X2.x C 1/6.x � 1/2
�

� 4�2

h
2
x4 C 1

.x2 � 1/2 C x2 C 1

x
log

x � 1

x C 1

i
C ı2

x2

.x2 � 1/2
; (B.26)

with a new integration constant ı2. Equation (B.5) provides the following relations
between the integration constants:

�2 D �3
8
�0; ı2 D �2�0 � 4ˇ0: (B.27)

Having solved all relevant field equations in the vacuum exterior of the rotating
mass shell to order !2, we have to perform the (continuous!) connection to a flat
interior metric of the form

ds2 D �e2 OU dt2 C e2
OK�2 OU Œdr2 C r2d#2 C r2 sin2 #.d' � ! OAdt/2�; (B.28)

with constants

OU D 0

U .X/C .!R/2
2

U 0; OK D 0

K.X/C .!R/2
2

K0; OA D 0

A.X/C .!R/2
2

A0:

If this should happen at a spherical shell shape r D R, we would have to fulfil

the relation
2

W .X/ D .M.X2 � 1/=2X/
2

K.X/ sin#: From the continuity of
2

U and
2

K at x D X (independent of #!) it follows that h.X/ D 0 and l.X/ D 0. From

the above expression for
2

W .X/ it then also follows that ˇ2 D 0: Inserting these
results into (B.21) and (B.26) for h.X/ and l.X/ leads to two expressions for �2
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which contradict each other. A consistent solution is possible only if we allow for a
non-spherical shape of the shell of the form

rS D RŒ1C .!R/2 f sin2 #�: (B.29)

Here f is some constant or some function of the physical parameters R and M of
our model. And since f is dimensionless, it can only depend on the dimensionless
quantity X D 2R=M . Such a non-spherical (centrifugal) deformation of the shell
is to be expected on physical grounds anyway. Besides (B.25) for x D X , the
continuity conditions for U.r; #/;K.r; #/ and W.r; #/ at the shell position rS lead
on the one hand to the conditions

2

U 0 D g.X/C h.X/;
2

K0 D k.X/: (B.30)

On the other hand, and more interestingly, from the #-dependent terms we get

h.X/ D 4X

3.X2 � 1/
f .X/; l.X/ D � 2

X2 � 1
f .X/;

ˇ2 D X2

4
f .X/; l 0.X/ D 4.3X2 � 2/

X.X2 � 1/2
f .X/: (B.31)

Inserting the last expressions into (B.21) and (B.26), observing the values 	 and ı2
from (B.17) and (B.27), and eliminating the constant �2, leads finally to the unique,
although somewhat involved result for the asphericity parameter

f .X/ D .X C 1/4.2X � 1/2
2X4.3X � 1/2(
.1C 6

X
C 1

X2
/� 32

�
2X C .X2 C 1/ log X�1

XC1
�

3
�
2X.X2 C 1/C .X4 C 2

3
X2 C 1/ log X�1

XC1
�
)

(B.32)

A graph of this parameter in the physical region X � 1 was given in Pfister and
Braun (1985). Here we list only its most important physical properties:

(a) f is negative for all X > 1, so that the coordinate radius r of the shell is
smaller in the equatorial plane than in the polar directions. Also the invariant
equatorial circumference is smaller than a polar circumference by an amount
�R.!R/2..XC1/.XC3/=X2/.�f .X//. NearX D 1:25 this ellipticity reaches
its maximum. [Qualitatively, these results coincide with Pfister and Braun
(1985), but quantitatively there are differences to the—obviously wrong—
results in Pfister and Braun (1985).]

(b) In the weak-field limitX ! 1 the parameter f reaches the non-zero value �2,
in accordance with the fact that H. Thirring (Thirring 1918) and others could not
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get a flat interior of the shell, and therefore no correct centrifugal force inside
their spherical mass shell.

(c) For X ! 1, i.e., for a collapsing shell f goes to zero. This agrees with a
result in de la Cruz and Israel (1968), who investigated (up to order !3) whether
rotating mass shells can be the source of the Kerr metric. They obtained the
result that sphericity and rigid rotation of the shell, and flat inside geometry
can only be reached in the limit X ! 1. In this limit, our constants have the
values ˇ0 D 32; ˇ2 D �0 D �2 D 0; ı2 D �128, and the resulting metric
coincides with the Kerr metric up to order !2. However, for X > 1, our metric
differs from the Kerr metric, what should be no surprise, since the Kerr metric
does not seem to be a natural vacuum solution outside of rigidly rotating, non-
collapsed bodies (compare the remarks at the end of Sect. 2.2).

With the field equations completely solved and analyzed in order !2, we come
to the !2 corrections of the extrinsic curvature tensors (according to (B.10)) of the
mass shell, and to its energy-momentum tensor. According to

drS
d#

D 2!2R3 f sin# cos#;

the basis vector e�# obtains the correction 2!2R3 f sin# cos# .0; 1; 0; 0/, and the
normal vector n� the correction �2!2R3..X C 1/2=X2/ f sin# cos# .0; 0; 1; 0/:
Of course, the basis vectors e�t and e�' remain unchanged. For the components of
the extrinsic curvature tensor we thus obtain

0

Kab C .!R/2
2

Kab D n�e
�
aIb

D .X C 1/2

X2

�
era;b C.4/ �rbce

c
a � 2!2R3 f sin# cos#.4/�#bce

c
a

�
:

(B.33)

In principle, the components Kab could now be given completely and explicitly. It
turns out, however, that the (#-independent) monopole terms get algebraically quite
involved. Since the quadrupole terms (proportional to sin2 #) are also by far the most
interesting ones physically, we restrict ourselves to these parts, and denote them by
�Kab. In the first place, there appears a term h0.X/ in these expressions. However,
this term is quite simply expressible by f .X/ and algebraic functions ofX , due to a

formula for
2

U 1.r; #/ which results from a combination of the field equations (B.5)
and (B.2):

h0.X/ D �8.2X
2 � 1/

3.X2 � 1/2 f � 3	2.X � 1/

8.X C 1/7
: (B.34)
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Herewith, the non-zero components of the tensor �Kab take the forms

R�KC
tt D 4X3.X � 1/

.X C 1/5

h
f C 	2

9X2 C 14X C 9

64.X C 1/6

i
sin2 #;

�KC
##=R D � X C 1

X2.X � 1/
h
.5X2 � 8X C 5/f � 9	2X.X � 1/2

16.X C 1/6

i
sin2 #;

�KC
''=R

sin2 #
D � X C 1

X2.X � 1/
h
.3X2 � 8X C 3/f � 9	2X.X � 1/2

16.X C 1/6

i
sin2 #;

R�K�
tt D �	2 X4

.X C 1/10
sin2 #;

�K�
##=R D �5.X C 1/2

X2
f sin2 #;

�K�
''=R

sin2 #
D �3.X C 1/2

X2
f sin2 #: (B.35)

With these results, to order !2, the quadrupole parts �Sab of the energy-
momentum tensor take the form

8�R�Stt D � 8X2

.X C 1/3

h
f C 3	2X.3X2 � 2X C 3/

64.X C 1/6.X � 1/

i
sin2 #;

8�R�S## D 2X2

.X C 1/3.X � 1/f sin2 #;

8�R�S'' D 6X2

.X C 1/3.X � 1/
h
f C 	2X2

4.X C 1/6

i
sin2 #: (B.36)

All these quadrupole ‘correction terms’ to the static terms
0

S a
a from (B.12) diverge

in the collapse limit X ! 1, This is no surprise, since the stresses
0

S #
# and

0

S
'
'

already diverge there, and the whole expansion in powers of ! then breaks down.
�Stt is negative for X > 1:3, i.e., in the whole physically realistic region. This

makes the (equally negative) energy density
0

S t
t bigger (in absolute value) at the

equator than at the poles. �S## is negative in the whole physical region X > 1, i.e.,

it makes the pressure
0

S #
# from (B.12) smaller at the equator. �S'' is positive for
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X < 10 and negative forX > 10. These results differ from the (presumably wrong)
formulas (4.2)–(4.4) in Pfister and Braun (1985).

We also calculate the solution to order !3 because we would like to show
explicitly that a mass shell with flat interior cannot rotate rigidly, and show explicitly
what the differential rotation looks like. As already mentioned in the beginning
of this appendix, to this order only the differential equation (B.6) for the function

A.r; #/ is relevant, and its !3-contribution
2

A.r; #/ obeys the equation

2

A11 C 1

r

2

A1 C 1

r2

2

A22 C 3

0

W

	 0

W 1

2

A1 C 1

r2

0

W 2

2

A2



� 4

0

U 1

2

A1 D 2

V 1

0

A1; (B.37)

with
2

V D 4
2

U � 3
2

W =
0

W : As also mentioned, the #-dependence of
2

A.r; #/ is only

of the form sin2 # . Inserting the functions
0

W .r; #/ and
0

U .r/ from (B.9) and (B.7),
we see that the ansätze

2

A.r; #/ D p.r/C q.r/.4 � 5 sin2 #/;
2

V .r; #/ D P.r/CQ.r/.4� 5 sin2 #/
(B.38)

leads to a separation of (B.37) of the form

d2p

dy2
� 2

y

dp

dy
D dP

dy

d
0

A

dy
; (B.39)

d2q

dy2
� 2

y

dq

dy
� 10q

y2.1 � y/ D dQ

dy

d
0

A

dy
; (B.40)

where, as for the terms of first order in !, a change to the variable y D
4x=.x C 1/2, with x D 2r=M , is opportune. The homogeneous solutions of
Eqs. (B.39) and (B.40) are found by standard methods of the theory of linear
ordinary differential equations of second order (see, e.g., Morse and Feshbach 1953,
Chap. 5.2), using the Wronskian determinant:

p1 D 1I p2 D y3; (B.41)

q1 D .1 � y/.1 � 2y=3/

y2
; q2 D Nq2 C q1 log.1 � y/;with

Nq2 D 1

y
� 7

6
C y

6
C y2

36
C y3

180
; (B.42)

with Wronskians Wp D 3y2 and Wq D y2=90, and where only the asymptotically
decreasing solutions p2.y/ and q2.y/ are physically acceptable. The function q2.y/
is positive in the whole physical region 0 < y 
 1, but it is everywhere quite small:
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From the maximal value q2.1/ D 1=30 it falls down to q2 D 0:01645 already
at y D 8=9 .x D 2/, and behaves asymptotically for y ! 0 like y5=630:
The inhomogeneous solutions of (B.39) and (B.40) are again found according to

Morse and Feshbach (1953), Sect.5.2. Since the term d
0

A=dy D 3	y2=64 essentially
cancels the Wronskians, we get

pinh D 3	

64

Z
dyy2P.y/I (B.43)

qinh D 135	

32

h
q2

Z
dy

dQ.y/

dy
q1 � q1

Z
dy

dQ.y/

dy
q2

i
: (B.44)

After inserting the functions P.y/ and Q.y/, according to (B.18), (B.21)
and (B.22), the integration constants in (B.43) and (B.44) have to be chosen such
that asymptotically decreasing solutions result. Since the #-independent monopole
function p.r/ is algebraically quite involved and physically not so interesting, we
confine ourselves to the explicit presentation of the function q.r/ in its ‘mixed’
dependence on x and y.

q D � 	

40

n
96ˇ2

x.x � 1/

.x C 1/7
C 	2

2048X2
y5.1 � y/

�3�2
h
y2 � 5

6
y3 C y.1 � y/.1 � y

3
/ log.1 � y/

i
C �2q2.y/

o
; (B.45)

with a constant �2. This result coincides with Eq. (2.19) of Pfister and Braun (1986)
if one observes the different definition of the constants. It is remarkable that the
function q.r/ decreases asymptotically as r�5, and therefore by two powers of r�1

more than the function
0

A.r/.
In order to guarantee the flatness of the interior solution also in order !3, the

exterior function
0

A.r/C.!R/2 2A.r; #/ has to join continuously to a constant interior

value
0

A0C.!R/2
2

A0 at the shell position r D rS D R.1C.!R/2f sin2 #/: Inserting
0

A.r/ from Eq. (B.14) and
2

A.r; #/ from Eq. (B.38) results in

q.X/

	
D �3X

3.X � 1/

5.X C 1/7
f .X/: (B.46)

The constant �2 is thus fixed at

�2 D 1

q2.Y /

n
3�2

h
Y 2� 5Y

3

6
CY.1�Y /.1� Y

3
/ log.1�Y /

i
� 8.X � 1/2.2X � 1/2

X3.X C 1/2.3X � 1/2

o
:

(B.47)
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Having now completely fixed the (quadrupole part of) function
2

A.r; #/, we can
calculate the order !3-quadrupole corrections to Kt' and S't ; according to (B.10):

�KC

t' D .!R/3	X

.X C 1/6.X � 1/

h
.6X3 � 20X2 C 13X � 3/f � 9	2X.X � 1/2

16.X C 1/5
� 5.X C 1/8.X � 1/

2X2

q0.X/

	

i
sin4 # I
(B.48)

�K�

t' D .!R/3
X

.X C 1/4
3	f sin4 #: (B.49)

8�R�S
'
t D !	X5

.X C 1/10.X � 1/

h
.6X3 � 26X2 C 9X � 1/f

� 3	2X

8.X C 1/5
.3X2 � 2X C 3/ � 5.X C 1/8.X � 1/q0.X/

2	X2

i
sin2 #:

(B.50)

By analogy with the analysis to first order of !, with the determination of the
constant 	 in (B.17), we must now also demand to order !3 that the energy-
momentum tensor S�� should represent a mass shell in purely axial rotation, i.e.,
that the eigenvector of S�� u� D ��u� should have the form u� D u0.1; 0; 0; N!/.
However, since for the quadrupole terms of this equation no free constant is now
available (the constant �2 has already been determined by (B.47)), it turns out that
this condition cannot be accomplished with a constant (#-independent) angular
velocity, but only with

N! D !Œ1C .!R/2e.X/ sin2 #�; (B.51)

i.e., the mass shell with flat interior cannot rotate rigidly to order !3. By combining
the above eigenvalue equations for � D t and � D ', thereby eliminating the mass
density �, we get

Stt C N!St' D 1

N! S
'
t C S'' : (B.52)

Inserting (B.51) and the expressions
1

S t
' (easily derivable from (B.16)), �Stt and

�S
'
' from (B.36), and �S

'
t from (B.50), we get the explicit (and non-zero!)

expression

e.X/ D X � 1
.X C 1/2.2X � 1/.3X � 1/

h
� 3.12X3 � 21X2 C 8X � 1/f �

�27.X C 1/5.X � 1/4.2X � 1/
X5.3X � 1/2

C 5.X C 1/8.2X � 1/

X2

q0.X/
	

i
: (B.53)
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(a) In the collapse limit X ! 1 the function e.X/ reaches the value zero. This
result is in agreement with the work (de la Cruz and Israel 1968) where it was
proven that spherical and rigidly rotating mass shells with flat interior can be
the source of the Kerr metric only in the black hole limit X ! 1.

(b) In the region X 2 .1; 3:5/ near the collapse limit the function e.X/ is negative.
For X > 3:5 e.X/ is positive, i.e., the angular velocity of the equatorial parts
of the mass shell with flat interior is somewhat higher than of the polar parts.

(c) In the weak field limit X ! 1 the coefficient e.X/ reaches the non-zero and
positive value e.X ! 1/ D 227=27 	 8:4.

These results differ considerably from the results in Fig.1 of Pfister and Braun
(1986).

To conclude this appendix we would like to make some remarks concerning the
metric for a rotating mass shell with flat interior to arbitrary order of the angular
velocity parameter !. The contribution to the metric function W.x; #/ outside the
mass shell in order !2n is, according to the field equation�W D 0, of the form

2n

W D
nX

mD0

2n

ˇmx
�2m�1 sin.2mC 1/#: (B.54)

All coefficients
2n

ˇm except
2n

ˇ0 are fixed by the condition that this function
continuously joins the interior functionW D eK0r sin# , as required by the flatness

condition. The function
2n

U .x; #/ is suitably written in the form

2n

U D
nX

mD0

2n
gm.x/P2m.cos#/: (B.55)

Then, due to the field equation (B.3), the functions
2n
gm.x/ have to satisfy the

differential equations

d2
2n
gm

dx2
C 2x

x2 � X2

d
2n
gm
dx

� 2m.2mC 1/

x2
2n
gm D 2n

I m; (B.56)

where
2n

I m are inhomogeneities, given by the lower order solutions. Since each
of Eqs. (B.56) has only one asymptotically decreasing homogeneous solution, the

function
2n

U .x; #/ outside the mass shell contains n C 1 integration constants. If

we demand that
2n

U decreases faster than x�1 (no correction of order !2n to the
total mass!), only n integration constants remain. These n constants are, however,

completely determined by the condition of continuity between
2n

U .x; #/ and some

interior constant U0. After inserting
2n

W into the field equations (B.4) and (B.5),
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2n

K.x; #/ has to satisfy two first-order linear differential equations which completely

determine the (asymptotically decreasing!) function
2n

K. Representing
2n

K in the form

2n

K.x; #/ D
nX

mD0

2n

km.x/ sin2m #;

the nC1 continuity conditions for
2n

km.x/ at the shell position are now just realizable

with the help of the remaining free constants, viz., the constants
2n

ˇ0 from
2n

W , and n

constants
2n

f m from the order 2n correction to the shell geometry

rS D R
	
1C .!R/2f sin2 # C � � � C .!R/2n

nX
mD1

2n

f m sin2m #


: (B.57)

In total, we see that to any even order !2n there exists (for given M;R; and !)
exactly one rotating mass shell with flat interior, starting from a spherical shell to
order !0.

In uneven orders of !, (B.6) for
2n

A.y; #/ has to be considered outside the mass

shell. In an extension of (B.38), it is advantageous to represent
2n

A by the Jacobi
polynomials P .1;1/

2m .cos#/ (see, e.g., Gradstein and Ryzhik 1981, p. 443).

2n

A.y; #/ D
nX

mD0

2n
pm.y/P

.1;1/
2m .cos#/: (B.58)

Then the functions
2n
pm.y/ have to fulfil the differential equations

d2
2n
pm

dy2
� 2

y

d
2n
pm

dy
� 2m.2mC 3/

y2.1 � y/

2n
pm D 2n

P m; (B.59)

with given inhomogeneities
2n

P m. Again, each of Eqs. (B.59) has only one asymp-

totically decreasing homogeneous solution, so that
2n

A contains n C 1 integration
constants. From these n C 1 numbers, n are fixed by the condition of continuity

of
2n

A with some interior constant
2n

A0. With
2n

A known, the energy-momentum tensor
components St' and S't are given up to order 2n C 1, and they have to satisfy the
condition (B.52) of axial rotation, which, to order 2nC1 represents nC1 equations
for the terms sin2m # with m D 0; 1; : : : ; n. For these nC 1 equations, we have the
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integration constant from
2n
p0.y/, and n constants

2n
e m from the order 2n correction

to the angular velocity

N! D !
	
1C .!R/2e sin2 # C � � � C .!R/2n

nX
mD1

2n
e m sin2m #



: (B.60)

This shows that also in uneven orders of! there is exactly one solution for a rotating
mass shell with flat interior. However, the analytic form of the solutions of orders
n > 3 is surely much more complicated than the above (already involved) solutions
of orders n D 2 and n D 3, because, e.g., the differential equations for these
solutions already contain factors log..x � 1/=.x C 1// or log.1 � y/.
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